Источники энергии - Лаврус В С Страница 28

Тут можно читать бесплатно Источники энергии - Лаврус В С. Жанр: Домоводство, Дом и семья / Прочее домоводство. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Источники энергии - Лаврус В С

Источники энергии - Лаврус В С краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Источники энергии - Лаврус В С» бесплатно полную версию:

Никакая деятельность невозможна без использования энергии. Производительность -- и, в конечном счете, прибыль -- в значительной степени зависит от стабильности подачи энергии. Наличие энергии -- одно из необходимых условий для решения практически любой задачи.

Получением, а правильнее сказать, преобразованием энергии лучшие умы человечества занимаются не одну сотню лет. Производство энергии предполагает ее получение в виде удобном для использования, а само получение -- только преобразование из одного вида в другой.

В предлагаемой книге ставилась цель представить сегодняшнее техническое состояние энергетики как отрасли и ассортимент источников и устройств преобразования электрической энергии, доступных для практического использования, от производителей присутствующих на нашем рынке. В приводимых примерах использован опыт разработок реальных проектов отечественных и зарубежных фирм (см. стр. 106).

Из всех отраслей хозяйственной деятельности человека энергетика оказывает самое большое влияние на нашу жизнь. Просчеты в этой области имеют серьезные последствия. Тепло и свет в домах, транспортные потоки и работа промышленности -все это требует затрат энергии.

Источники энергии - Лаврус В С читать онлайн бесплатно

Источники энергии - Лаврус В С - читать книгу онлайн бесплатно, автор Лаврус В С

Пятилопастное ветроколесо, установленное на треноге, должно было приводить в движение гребные колеса. Идея так и осталась на бумаге, хотя понятно, что ветер произвольного направления может двигать судно в любом направлении [14].

Первые разработки теории ветродвигателя относятся к 1918 г. В. Залевский заинтересовался ветряками и авиацией одновременно. Он начал создавать полную теорию ветряной мельницы и вывел несколько теоретических положений, которым должна отвечать ветроустановка.

В начале ХХ века интерес к воздушным винтам и ветроколесам не был обособлен от общих тенденций времени -- использовать ветер, где это только возможно. Первоначально наибольшее распространение ветроустановки получили в сельском хозяйстве. Воздушный винт использовали для привода судовых механизмов. На всемирно известном "Фраме" ("Фрам" [фр. frum вперед] -исследовательское судно Ф. Нансена, исследователя Арктики) он вращал динамомашину. На парусниках ветряки приводили в движение насосы и якорные механизмы.

В России к началу нынешнего века вращалось около 2500 тысяч ветряков общей мощностью миллион киловатт. После 1917 года мельницы остались без хозяев и постепенно разрушились. Правда, делались попытки использовать энергию ветра уже на научной и государственной основе. В 1931 году вблизи Ялты была построена крупнейшая по тем временам ветроэнергетическая установка мощностью 100 кВт, а позднее разработан проект агрегата на 5000 кВт. Но реализовать его не удалось, так как Институт ветроэнергетики, занимавшийся этой проблемой, был закрыт [14].

Сложившаяся ситуация отнюдь не обусловливалась местным головотяпством. Такова была общемировая тенденция. В США к 1940 году построили ветроагрегат мощностью в 1250 кВт. К концу войны одна из его лопастей получила повреждение. Ее даже не стали ремонтировать -- экономисты подсчитали, что выгодней использовать обычную дизельную электростанцию. Дальнейшие исследования этой установки прекратились, а ее создатель и владелец П. Путнэм изложил свой горестный опыт в прекрасной книге "Энергия ветра", которая не потеряла до сих пор своей актуальности.

Неудавшиеся попытки использовать энергию ветра в крупномасштабной энергетике сороковых годов не были случайны. Нефть оставалась сравнительно дешевой, резко снизились удельные капитальные вложения на крупных тепловых электростанциях, освоение гидроэнергии, как тогда казалось, гарантирует и низкие цены и удовлетворительную экологическую чистоту.

Существенным недостатком энергии ветра является ее изменчивость во времени, но его можно скомпенсировать за счет расположения ветроагрегатов. Если в условиях полной автономии объединить несколько десятков крупных ветроагрегатов, то средняя их мощность будет постоянной. При наличии других источников энергии ветрогенератор может дополнять существующие. И, наконец, от ветродвигателя можно непосредственно получать механическую энергию.

4.4.1. ВЕТЕР

Ветер дует везде -- на суше и на море. Человек не сразу понял, что перемещение воздушных масс связано с неравномерным изменением температуры и вращением земли, но это не помешало нашим предкам использовать ветер для мореплавания.

Глобальные ветры

К глобальным ветрам относятся пассаты и западный ветер.

Пассаты образуются в результате нагрева экваториальной части земли. Нагретый воздух поднимается вверх, увлекая за собой воздушные массы с севера и юга. Вращение земли отклоняет потоки воздуха. В результате устанавливаются дующие круглый год с постоянной силой северо-восточный пассат в северном полушарии и юго-восточный -- в южном. Пассаты дуют в приэкваториальной области, заключенной между 25 и 30o северной и южной широтами соответственно. В северном полушарии пассаты охватывают 11% поверхности океанов, а в южной -- 20%. Сила пассатного ветра обычно составляет 2...3 балла.

Западный ветер дует круглый год с запада на восток в полосе от 40 до 60o южной широты вдоль кромки дрейфующих льдов Антарктиды. Это самый сильный постоянный ветер. Его сила достигает 8...10 баллов и редко бывает менее 5 баллов.

В глубине материка нет постоянного направления ветра. Так как разные участки суши в разное время года нагреваются по-разному можно говорить только о преимущественном сезонном направлении ветра. Кроме того, на разной высоте ветер ведет себя по-разному, а для высот до 50 метров характерны рыскающие потоки.

Потенциал атмосферы можно вычислить зная ее массу и скорость рассеяния энергии. Для приземного слоя толщиной в 500 метров энергия ветра, превращающаяся в тепло, составляет примерно 82 триллиона киловатт-часов в год. Конечно, всю ее использовать невозможно, в частности, по той причине, что часто поставленные ветряки будут затенять друг друга. В то же время отобранная у ветра энергия, в конечном счете, вновь превратится в тепло.

Среднегодовые скорости воздушных потоков на стометровой высоте превышают 7 м/с. Если выйти на высоту в 100 метров, используя подходящую естественную возвышенность, то везде можно ставить эффективный ветроагрегат.

На рис. p085 показаны области энергии среднегодовых потоков ветра Европейской части стран СНГ [15]. Если взять только нижний 100-метровый слой и поставить установку на 100 квадратных километров, то при установленной мощности около двух миллиардов киловатт можно выработать за год 5 триллионов киловатт-часов, что в 2 раза больше гидроэнергетического потенциала стран СНГ.

Местные ветры

Первыми для плавания использовались местные ветры. К ним относятся бризы (бриз [фр. brise] -- свежий ветер). Бризы -это легкие ветры, окаймляющие берега материков и больших островов, вызываемые суточным колебанием температуры. Их периодичность обусловлена различием температуры суши и моря днем и ночью. Днем суша нагревается быстрее и сильнее, чем море.

Теплый воздух поднимается над береговой полосой, а на его место устремляется прохладный воздух с моря -- морской бриз. Ночью берег охлаждается быстрее и сильнее, чем море, поэтому теплый воздух поднимается над морем, а его замещает холодный воздух с суши -- береговой бриз.

Вторыми, постоянно дующими ветрами, являются муссоны (муссон [арабск. мавсим] -- время года). Эти ветры дуют в Индийском океане и связаны с сезонным изменением температуры материка и океана. Летом солнечные лучи сильнее нагревают сушу и ветер дует с моря на сушу. Зимой муссон дует с суши на море. Вращение земли вызывает появление сил Кориолиса, которые отклоняют муссоны вправо. Поэтому летом дуют юго-западные муссоны, а зимой -- северовосточные. Муссоны достигают большой силы и вызывают в Индийском океане соответствующие местным ветрам поверхностные течения.

4.4.2. УПРЯЖЬ ДЛЯ ВЕТРА

Принцип действия всех ветродвигателей один: под напором ветра вращается ветроколесо с лопастями, передавая крутящий момент через систему передач валу генератора, вырабатывающего электроэнергию, водяному насосу. Чем больше диаметр ветроколеса, тем больший воздушный поток оно захватывает и тем больше энергии вырабатывает агрегат.

Принципиальная простота дает здесь исключительный простор для конструкторского творчества, но только неопытному взгляду ветроагрегат представляется простой конструкцией.

Традиционная компоновка ветряков -- с горизонтальной осью вращения (рис. p084) -- неплохое решение для агрегатов малых размеров и мощностей. Когда же размахи лопастей выросли, такая компоновка оказалась неэффективной, так как на разной высоте ветер дует в разные стороны. В этом случае не только не удается оптимально ориентировать агрегат по ветру, но и возникает опасность разрушения лопастей.

Кроме того, концы лопастей крупной установки двигаясь с большой скоростью создают шум. Однако главное препятствие на пути использовании энергии ветра все же экономическая -мощность агрегата остается небольшой и доля затрат на его эксплуатацию оказывается значительной. В итоге себестоимость энергии не позволяет ветрякам с горизонтальной осью оказывать реальную конкуренцию традиционным источникам энергии.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.