Джейми Дейвис - Онтогенез. От клетки до человека Страница 2
- Категория: Научные и научно-популярные книги / Образовательная литература
- Автор: Джейми Дейвис
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 8
- Добавлено: 2019-07-01 21:05:37
Джейми Дейвис - Онтогенез. От клетки до человека краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Джейми Дейвис - Онтогенез. От клетки до человека» бесплатно полную версию:Как мы стали такими, какие мы есть? Почему у нас две руки и ноги, но только одна голова? Почему человеческое тело симметрично, но в то же время его половинки не полностью идентичны? Почему отпечатки пальцев однояйцевых близнецов не одинаковые? Как развивался наш мозг и что такое сознание? Почему мы смертны и какой в этом биологический смысл?Подобные вопросы люди задавали себе с древнейших времен. Даже сейчас, при современном развитии науки, не до конца понятны те фундаментальные принципы, благодаря которым из единственной оплодотворенной яйцеклетки формируется такой сложно организованный организм, состоящий из множества молекулярных структур, которые взаимодействуют друг с другом, имеют свой собственный цикл жизни, способны к регенерации и саморазвитию. «В основе этого лежит принцип центральной адаптивной самоорганизации», – говорит современная биология. Но что же собой представляет этот принцип?Джейми Дейвис проделал огромную работу по адаптации сложнейшего научного материала для уровня, понятного массовому читателю. В увлекательной и ироничной форме, снабдив свой рассказ более чем 80 иллюстрациями, автор приглашает читателя в путешествие через все аспекты биологического развития человека – от зачатия до смерти. Последние достижения эмбриологии, генетики, физики, нейропсихологии позволят нам узнать больше о стволовых клетках и белковом метаболизме, различиях между хромосомами и функциях генов, нейронных связях и прочих важнейших факторах, влияющих на внутреннюю эволюцию человека.
Джейми Дейвис - Онтогенез. От клетки до человека читать онлайн бесплатно
Новые данные биологии развития ясно говорят о том, что организм возникает совсем не так, как строятся здания или машины. Смешно, но факт: способы образования нашего собственного тела абсолютно чужды нашим представлениям о том, как это могло бы быть. Поэтому, пытаясь понять, как эмбрион строит сам себя, очень полезно сравнить – и противопоставить – развитие этой биологической системы с привычными способами строительства объектов.
У всех инженерных проектов, будь то сборка локомотива или строительство здания, есть общие черты. Прежде всего у любого проекта есть определенный план – это может быть чертеж или какая-либо иная схема, – ясно показывающий, что же мы хотим получить в итоге. План показывает ожидаемый результат, но частью этого результата он не будет. У каждого проекта есть руководитель – главный инженер или архитектор, – который дает указания подчиненным, а те, в свою очередь, рабочим, которые и выполняют укладку кирпича, резку, сварку и покраску. Детали будущей конструкции не могут соединиться вместе сами по себе. Это делают рабочие – каменщики, сборщики, сварщики, – которые сами не являются частью этой конструкции. При этом рабочие и главный инженер владеют огромным объемом «внешней» информации – по технологии сварки или камнетесному делу, – которая не присутствует в объектах, которые они создают. И наконец, большинство рукотворных сооружений вводятся в эксплуатацию только после полного завершения работ.
В биологическом конструировании мы не найдем этих привычных этапов. Это лишний раз подчеркивает разницу между живыми существами и инженерными конструкциями. В отличие от технических проектов, биологическое конструирование не подразумевает никаких чертежей и эскизов конечного результата. Безусловно, в оплодотворенной яйцеклетке содержится информация (в генах, в молекулярных структурах, в пространственном распределении концентраций химических веществ), но связь между этой информацией и тем, как в конечном итоге будет выглядеть готовый организм, далеко не проста. Известно, что эта информация контролирует дальнейшую последовательность событий (а знаем мы это, потому что изменение этой информации, например при мутации гена или изменении концентрации определенного вещества в определенном месте, меняет последовательность событий, и развитие идет по аномальному пути).
В технике, и особенно в математике, к конечному результату можно прийти при помощи пошаговых инструкций. Рассмотрим пример: посередине пшеничного поля воткните в землю кол и привяжите к нему веревку. Возьмите другой ее конец и пройдите несколько метров, чтобы веревка натянулась. Затем идите направо, сохраняя натяжение. Таким образом можно начертить простейшую окружность. Некоторые структуры гораздо легче создать по инструкциям, чем по чертежам. Если у вас есть под рукой карандаш и бумага, попробуйте по приведенным ниже инструкциям начертить геометрическую фигуру под названием «салфетка Серпинского».
1. Начертите равносторонний треугольник с горизонтальным основанием. Чем больше он будет, тем лучше. Будем считать его «исходным треугольником».
2. Внутри данного треугольника проведите три отрезка. Каждый из них должен проходить из середины каждой стороны в середину смежной. Эти отрезки образуют перевернутый треугольник, занимающий четверть площади исходного.
3. Заштрихуйте полученный треугольник.
4. Теперь вы видите три незаштрихованных треугольника внутри исходного. Проделайте с каждым из них те же операции, что и с исходным треугольников, начиная с пункта 2.
5. (Продолжайте, пока вам не надоест: если вы вооружены хорошим карандашом, это занятие может длиться вечно.)
«Салфетка Серпинского» (благодаря заштрихованным областям чертеж напоминает ажурное вязание) – пример фрактальной структуры. При любом увеличении мы получим одно и то же изображение. Еще один пример фрактала – «множество Кантора». Его удобнее всего рисовать на поверхности, с которой легко стирать. Подойдет школьная доска. Нарисуйте линию, затем сотрите ее среднюю треть, после этого сотрите средние трети двух полученных линий, и так далее. Через некоторое время вы получите множество точек, расположенных через определенные интервалы. Статистические свойства этих интервалов идентичны свойствам многих природных явлений, будь то осыпание песка с бархана или промежутки между каплями воды из подтекающего крана, землетрясениями, эпидемиями и случаями массового вымирания животных.
Пошаговые инструкции, а не эскизы используются для создания объектов не только в математике, но и в повседневной жизни; простейший пример – кулинарный рецепт. По такому же принципу работает и текстильное производство, от ручного вязания («одну петлю провязываем, одну накидываем») до «жаккардовой машины» (1801 г.), первого в мире промышленного робота, на котором можно было, меняя перфокарты, переключать уровни сложности от простейшего до самого сложного узора. Музыка также воспроизводится благодаря инструкциям, роль которых выполняют нотные знаки на нотном стане, по которым музыкант может воспроизводить звуки необходимой высоты и продолжительности в нужный момент времени.
Многовековой опыт использования инструкций для получения задуманного результата с минимальными затратами времени и усилий приводит к тому, что мы склонны считать, что биологическая информация определяет наш внешний вид каким-то похожим образом. Это опасное заблуждение. Между живыми организмами и рукотворными объектами есть существенное отличие: в последнем случае инструкциям следует внешний сознательный агент действия. Даже такие, казалось бы, явные исключения, как автоматическая вязальная машина или механическое пианино, созданы по инструкциям и планам теми же внешними агентами, а значит, исключениями не являются. Проще говоря, кардиганы, симфонии, автомобили и соборы сами себя не создавали. Следование инструкциям, привнесение необходимой информации о процессе (умение вязать, готовить или класть кирпич) и собственно работа с материалами осуществляются не самой растущей структурой, а извне. Напротив, содержащаяся в эмбрионе информация считывается и обрабатывается самим эмбрионом; ему не на кого переложить ни тяжелую физическую работу, ни раздумья об оптимизации процесса. Как мы скоро увидим, это означает, что ответственность за биологическое конструирование лежит на всех его участниках, а не на руководителе, как в случае реализации инженерных проектов. Процесс создания тела человека контролируется не какими-то отдельно взятыми частями эмбриона, а системой в целом.
Чтобы понять особенности процесса построения, необходимо также иметь некоторое представление о природе используемых материалов. Рядом с моей лабораторией в Эдинбургском университете находятся три знаменитых моста: элегантный мост Дин, построенный Томасом Телфордом, легендарный железнодорожный мост через залив, построенный Бенджамином Бейкером, и, неподалеку от него, автодорожный мост Форд-Роуд. Телфорд построил мост из каменных блоков – тяжелых, громоздких, надежных только за счет сжимающего напряжения. Поэтому он использовал традиционный метод: сначала строились опоры, затем сооружался деревянный каркас для арочного пролета, затем на него выкладывались обтесанные в форме арки камни. После того как вес камня стабилизирует пролет, каркас можно удалить.
Бейкер использовал для строительства железнодорожного моста радикально новый по тем временам материал – сталь. Этот материал может держаться как за счет растяжения, так и за счет сжимающего напряжения, поэтому строительство можно было начинать с любой опоры, прикрепляя к ней секции одним концом. Чтобы поместить длинные и относительно легкие стальные секции на нужное место, использовались подъемные краны. Между собой эти секции соединялись с помощью заклепок.
Вантовый мост, самый новый из трех, держится за счет стальных тросов, вант, которые закреплены на пилонах на разных берегах. В данном случае сначала были установлены пилоны, затем намечены опорные точки для крепления тросов, а затем постепенно натягивались держащие мост ванты.
В каждом из этих случаев стратегия строительства моста определялась характером материалов. Ни один из них нельзя было бы построить, используя стратегию, предназначенную для моста другого типа. Так же и в биологии: стратегия конструирования зависит от природы участвующих в нем компонентов. Таким образом, настало время представить вам три ключевых биологических компонента, которые будут много раз упомянуты в этой книге, – это белки, матричная РНК (мРНК) и ДНК.
Белки – основные строительные материалы в биологии. Из них создана большая часть физических структур, которые придают форму клеткам, они образуют каналы и насосы, регулирующие циркуляцию веществ в клетках. Кроме того, белки – катализаторы. Они запускают и контролируют биохимические реакции и метаболические пути, продуктами которых являются другие составляющие организма, например ДНК, жиры и углеводы. Относительную важность белков можно проиллюстрировать, например, таким фактом: эритроциты (красные кровяные тельца) в процессе созревания теряют ядра, в которых содержатся все их гены, но после этого живут еще около ста двадцати дней. Клетка, в которой сохранились гены, но нарушилась функция белков, погибнет в течение нескольких секунд.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.