Ханна Фрай - Математика любви. Закономерности, доказательства и поиск идеального решения Страница 6

Тут можно читать бесплатно Ханна Фрай - Математика любви. Закономерности, доказательства и поиск идеального решения. Жанр: Научные и научно-популярные книги / Образовательная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Ханна Фрай - Математика любви. Закономерности, доказательства и поиск идеального решения

Ханна Фрай - Математика любви. Закономерности, доказательства и поиск идеального решения краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Ханна Фрай - Математика любви. Закономерности, доказательства и поиск идеального решения» бесплатно полную версию:
Казалось бы, что общего у любви и математики? Автор книги, профессор математики Лондонского университета Ханна Фрай, убедительно доказывает: математические формулы вполне способны рассказать нам что-то новое о любви и отношениях. Пусть наши чувства хаотичны и с трудом поддаются анализу, но ведь математика давно научилась работать с хаосом – идет ли речь о поведении элементарных частиц или демографических проблемах. Как бы причудливы и изменчивы ни были законы любви, математика в состоянии не только описать их, но и предложить ряд практических идей – от теории флирта и оптимального алгоритма поведения на вечеринке до прогнозирования числа гостей на свадьбе и даже их рассадки за столом. Математика – это язык мироздания. Так почему бы не поговорить на этом языке о любви?В формате pdf A4 сохранен издательский дизайн.

Ханна Фрай - Математика любви. Закономерности, доказательства и поиск идеального решения читать онлайн бесплатно

Ханна Фрай - Математика любви. Закономерности, доказательства и поиск идеального решения - читать книгу онлайн бесплатно, автор Ханна Фрай

Однако и больницами дело тоже не ограничивается. Алгоритм поиска партнеров Гейла – Шепли используется во множестве сценариев реальной жизни: последипломная подготовка стоматологов, трудоустройство юристов в Канаде, набор учеников в выпускные классы и студенческие братства. Этот алгоритм настолько полезен, что существует масса научной литературы, посвященной исследованию пределов его применимости и особых случаев применения – и многие из этих особых случаев как раз относятся к сфере знакомств и установления отношений.

Математики усовершенствовали метод таким образом, чтобы в качестве инициаторов отношений (причем как по отношению к противоположному, так и к своему полу) могли одновременно выступать и мужчины, и женщины, а также изменили правила, включив в рейтинги предпочтений взаимные связи. Кроме того, они предусмотрели сценарий, согласно которому вы предпочтете уйти с вечеринки в одиночестве, чем подойти вон к тому странному типу, что сидит в углу. Ученые даже исследовали, что именно происходит, когда вы обманываете мужчин (но, как ни странно, не предусмотрели сценария, в котором вы обманываете женщин).

В этих особых случаях математика ситуации может быть уже достаточно сложной (хотя, если вам интересно, в конце книги приведено некоторое количество весьма любопытных ссылок). Но при всех натяжках и исключениях вывод остается одним и тем же: если вы в состоянии время от времени выслушивать обидные отказы, ваша предприимчивость в конечном счете будет вознаграждена. Всегда лучше сделать первый шаг, чем сидеть и ждать, пока кто-нибудь подойдет к вам. Поэтому задавайте себе высокую планку и делайте это почаще. Так говорит математика.

4. Знакомства в интернете

Итак, будем надеяться, что вы достаточно отважны, чтобы подойти к самому яркому персонажу вечеринки, вооружившись самыми общими знаниями “задачи о марьяже”. Но слишком много вечеринок подряд – это изнурительно, вы не находите? К тому же не факт, что на них всегда будут присутствовать столь привлекательные герои, как Джоуи и Рейчел. В таком случае почему бы не испробовать способ, с которым вы можете добиться успеха, не покидая собственной квартиры? Настало время для знакомства в интернете!

Сегодня, наверное, у каждого из нас есть знакомые пары, нашедшие друг друга в Сети. И, несмотря на все предрассудки и стереотипы, мы с энтузиазмом восприняли этот новый подход к поиску любви. Последние данные статистики свидетельствуют, что в США три четверти одиноких людей прибегали к помощи сайтов знакомств и до трети молодых супругов нашли друг друга через интернет.

Привлекательность метода очевидна. Не нужно набираться храбрости, чтобы знакомиться с девушкой в баре на глазах своих друзей и ее подруг, или рисковать тем, что придется убить вечер в компании какого-нибудь очаровательного овоща. В морях интернета водится гораздо больше рыбы. Современные сайты знакомств предлагают бесчисленное множество кандидатур, как будто специально подобранных под ваши запросы, и кажется, что от встречи с идеалом вас отделяет лишь одно нажатие клавиши.

Во всяком случае, мы думаем, что так должно быть, но иногда, когда выбор чересчур большой, бывает трудно отсечь сомнительные варианты. Для некоторых из нас попытки познакомиться онлайн превращаются в череду встречи с лягушками, не имеющими ни малейшего шанса превратиться (по крайней мере, с нашей точки зрения) в принца или принцессу. Кроме того, больше возможностей – больше отказов. Как всегда, хорошая новость заключается в том, что на помощь нам может прийти математика.

Для математиков, которые, подобно мне, изучают закономерности человеческого поведения, сайты онлайн-знакомств – просто подарок судьбы, неисчерпаемый кладезь информации. Следы, которые люди оставляют в интернете, позволили получить огромное количество новых знаний о любви и новых взглядов на нее. Изучая ничего не подозревающих одиночек, математики вырабатывают новый, научный, подход к технике флирта. Анализируя отношения людей, которые нашли друг друга через сайты знакомств, мы также начинаем понимать, почему все существовавшие до настоящего времени системы “научного” знакомства плохо работают или, во всяком случае, работают не совсем так, как нам хотелось бы. Наконец, наблюдая за поведением наиболее популярных пользователей, ученые могут подсказать, как выделиться в растущей толпе онлайн-соискателей.

Я могла бы написать целую книгу о знакомствах в интернете и о том, что нового они могут рассказать нам о нас самих. К сожалению, придется ограничиться лишь одной главой, но, надеюсь, вы все-таки получите представление о том, как математика помогает в современном, технологичном, поиске любви.

Как рассчитать совместимость партнеров?

Сайт знакомств – идеальный и простой каталог незнакомцев, готовых вступить в отношения. Начиная работать с этим каталогом, вы можете прежде всего отфильтровать кандидатов по возрасту и месту жительства. Но многие сайты способны на нечто большее: они предлагают пользователям научный подход к поиску пары.

Такие сайты отсеивают варианты, которые не соответствуют вашим требованиям, а также предлагают кандидатуры, которые вы могли бы пропустить, если бы ваши критерии поиска ограничивались только внешностью и местом жительства. Один из самых успешных ресурсов такого рода – OkCupid, бесплатный сайт знакомств, основанный группой математиков и использующий особенно элегантный алгоритм.

Алгоритм – это, в сущности, рецепт: последовательность логических шагов, которые нужно совершить для выполнения той или иной задачи. В данном случае алгоритм OkCupid обрабатывает анкету, которую каждый участник заполняет при регистрации на сайте, в определенной логической последовательности и выводит для каждой потенциальной пары определенную сумму баллов, которая показывает, насколько хорошо партнеры подходят друг другу.

Три ключевых составляющих алгоритма – это: 1) ваши ответы, 2) желательные ответы партнера и 3) степень важности для вас каждого из ответов партнера.

Последняя составляющая особенно важна, потому что позволяет персонализировать процесс. Для кого-то политические взгляды будущего партнера важнее, чем его отношение к детям, а для кого-то – наоборот. Для кого-то обязательное условие – определенный уровень доходов партнера, а для кого-то важно, чтобы он тоже любил фильмы с Райаном Гослингом, хотя в данном случае вы, возможно, не будете настаивать на этом критерии (перечитайте главу 1). В любом случае каждому из нас нужен механизм, позволяющий отфильтровать то, что именно для нас по-настоящему важно.

Спрашивая пользователей, насколько важен для них тот или иной вопрос, OkCupid предлагает им оценить степень важности в баллах по следующей шкале:

1. Совсем не важен – 1.

2. В какой-то степени важен – 10.

3. Достаточно важен – 50.

4. Очень важен – 100.

5. Это обязательное условие – 250.

Таким образом определяется максимальное количество баллов, которое ваш потенциальный партнер может “заработать” в ваших глазах на каждом вопросе.

Чтобы продемонстрировать, каким образом алгоритм рассчитывает степень взаимного соответствия пары, рассмотрим пример, опять же выбрав два совершенно случайных имени: Гарри и Гермиона.

В нашем примере используются всего два вопроса: “Нравится ли тебе квиддич?” и “Умеешь ли ты побеждать темных волшебников?”

С учетом этих данных поиск ответа на вопрос, подходят ли друг другу Гарри и Гермиона, сводится к трем простым шагам.

Шаг 1

Во-первых, мы должны рассчитать, насколько хорошей парой для Гарри будет Гермиона. Гарри оценил свой первый вопрос лишь как “в какой-то степени важный”, а это означает, что Гермиона может “заработать” на нем максимум 10 баллов. Поскольку она отвечает именно так, как хотелось бы Гарри, то за первый вопрос получает 10 баллов из 10.

Следующий вопрос Гарри оценил как “очень важный”, поэтому Гермиона, ответив на этот вопрос “нет”, не получает ни одного балла. Таким образом, степень ее соответствия ожиданиям Гарри, выраженная в процентах, составляет:

(10+0) ÷ (10+100) = 10 ÷ 110 = 9,09 %.

Шаг 2

Повторяем предыдущий шаг, только на этот раз рассчитываем, насколько Гарри подходит Гермионе. Гермиона оценила первый вопрос всего в один балл (ответ для нее “совсем не важен”). Так как Гарри ответил на вопрос “да” (в то время как Гермиона предпочла бы “нет”), он не получает баллов. Вероятно, Гермиона не хочет, чтобы у ее спутника жизни был один квиддич на уме (и ее можно понять).

Между тем второй вопрос так важен для Гермионы, что он стоит колоссальных 250 баллов. И давайте смотреть правде в глаза – нет человека, на которого не подействовало бы вовремя произнесенное обезоруживающее заклинание “Экспеллиармус”! В результате Гарри зарабатывает эти 250 баллов, и его процент соответствия требованиям Гермионы составляет

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.