Рэм Петров - Сфинксы XX века Страница 35
- Категория: Научные и научно-популярные книги / Биология
- Автор: Рэм Петров
- Год выпуска: -
- ISBN: нет данных
- Издательство: -
- Страниц: 38
- Добавлено: 2019-02-05 15:40:05
Рэм Петров - Сфинксы XX века краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Рэм Петров - Сфинксы XX века» бесплатно полную версию:Сфинксы древнего Египта, русалки славян, леопардо-человек Герберта Уэллса и человек-амфибия Александра Беляева — вот вехи фантазии людей, мечтающих о тех временах, когда станет возможным пересаживать и приживлять ткани и целые органы от одного организма другому. Фантазия создавала людей с крыльями орлов или с жабрами молодой акулы, а действительность разбивала все эти мечты. Наука оказывалась бессильной пересадить человеку не только какой-либо новый орган, но даже свойственный ему и утраченный вследствие болезни или несчастного случая.
Рэм Петров - Сфинксы XX века читать онлайн бесплатно
Вот в самых общих чертах теория Фрэнка Макферлена Бернета, наилучшим образом объясняющая основные механизмы иммунитета — распознавание «своего» и «чужого», выработку антител и толерантности. Эта теория родила тысячи экспериментов и идей по проверке, подтверждению и опровержению. Эти тысячи работ вскрыли новые важные факты и закономерности в иммунологии. Теория совершенствовалась и совершенствуется. Идея клонированности подтвердилась полностью, механизм толерантности уточняется. Наука сделала еще один шаг, приближаясь к истине.
Но впереди еще столько вершин, которые нам пока не видны.
Сэр Фрэнк Макферлен Бернет, критически анализируя слабые стороны новой теории, всегда подчеркивает, что положительный эффект теории еще и в том, чтобы вызвать поток исследований, подтверждающих или опровергающих ее. Рассуждениям Бернета созвучны слова известного биолога Джона Лилли:
«Если же окажется, что я кругом не прав, я буду утешаться сознанием, что в истинно научных исследованиях ни один опыт нельзя считать напрасным: даже при экспериментальном опровержении какой-либо теории выявляются новые и ценные данные».
Иммунология и лучевая болезнь
А теперь — сугубая связь с практикой. Лучевая болезнь.
Ее узнали давно, эту болезнь. Вскоре после открытия радиоактивности. Но ворвалась в жизнь человечества она после 1945 года, после взрыв атомных бомб в Хиросиме и Нагасаки. На тысячи людей подействовали ионизирующие излучения и самого взрыва и радиоактивных изотопов, которые он породил. Тысячи людей заболели лучевой болезнью, многие погибли. Многие страдают от ее последствий до сего дня. И до сих пор умирают от взрывав, произведенных в августе 1945 года.
В последующем оказалась — лучевая болезнь не только военная проблема. В мирных условиях возможны несчастные случаи на атомных предприятиях. Ионизирующими излучениями — гамма-лучами, лучами Рентгена — широко пользуются для лечения злокачественных опухолей. Приходится применять очень высокие дозы облучения — иначе не будет эффекта.
Опухоль гибнет. Но, вылечившись от рака, человек заболевает другой болезнью. Ее надо лечить. Очень часто, отказываются от полноценной рентгенотерапии из-за отсутствия полноценного лечения лучевой болезни. Научившись лечить ее, мы сможем спасти многих сегодня неизлечимо больных раком.
Возможное лучевое поражение космонавтов за счет космической радиации сегодня приобрело уже первоочередное значение. Длительные полеты не за горами. Активация солнечной деятельности может привести к переоблучению космонавтов ионизирующими излучениями солнца.
Иммунологические исследования при лучевой болезни оказались чрезвычайно важными. Возникла новая отрасль знаний — радиационная иммунология. Успехи ее имеют самое непосредственное отношение и к пониманию лучевой болезни и к ее лечению.
В результате облучения наиболее сильно поражаются четыре системы организма, нарушения которых и определяют картину острой лучевой болезни:
1. Кроветворная система. Поражения в костном мозге, селезенке и лимфатических узлах приводят к уменьшению клеток крови. Сначала лейкоцитов, а потом и эритроцитов. Развивается анемия. Гибель от поражения кроветворения называют костномозговой смертью.
2. Желудочно-кишечный тракт. В результате тошнота, рвоты, поносы, нарушение пищеварения и всасывания питательных веществ из кишечника.
3. Повреждение биологических барьеров. В результате повышается проницаемость тканей, в том числе и кровеносных сосудов. Как следствие этого развиваются кровоизлияния под кожей, в кишечнике, в легких и любых других тканях.
4. Чрезвычайно страдает иммунитет. Организм оказывается беззащитным перед микробами. Развиваются инфекционные осложнения, которые часто являются непосредственной причиной смерти облученного организма.
Иммунологи справились с одной из задач: проблема предупреждения и лечения инфекционных осложнений лучевой болезни, в основном решена. Предложены эффективные методы предупреждения инфекций, создания иммунитета у облученных с помощью вакцинаций и введения иммунных сывороток. Разработаны принципы лечения инфекционных осложнений антибиотиками. Иммунологи могли бы считать свою миссию в области радиационной медицины выполненной, если бы проблема восстановления кроветворения при лучевой болезни не столкнулась с иммунологией.
Опять приходится вернуться несколько назад. Более перспективный способ лечения острого лучевого поражения даже при сверхсмертельных дозах — это восстановление кроветворения за счет пересадки костного мозга необлученного донора. Лечебный эффект стопроцентный. Но костный мозг приходится брать от другого — чуждого в антигенном отношении — организма.
И вырастают все проблемы иммунологической несовместимости тканей.
Возникает сфинкс. Возникает в результате спасения от лучевой смерти. Но, если вы еще помните болезнь рант, сфинкс почти на 100 процентов обречен на смерть от иммунной агрессии пересаженных клеток. А как бороться с реакцией трансплантата против хозяина, еще неизвестно. Союз иммунологии и радиационной медицины продолжается. И кто знает, может быть, на стыке этих двух дисциплин будет решена проблема преодоления барьера несовместимости тканей при пересадках.
Может быть, именно здесь будет решено сразу несколько задач: лечение лучевой болезни, преодоление барьера несовместимости тканей, частично разрешится вопрос лечения рака, злокачественного белокровия.
Союз радиологии и иммунологии очень перспективен. Трудно предусмотреть, что он даст. Но мы надеемся. А может быть, как это часто бывает, может быть, пройдут годы, будет затрачено множество усилий — и вдруг появятся какие-то две новые молодые науки. И, занимаясь совершенно другой проблемой, решат они проблемы, над которыми мы ломаем свои головы.
Иммунология и космос
Иммунология и космос — одна из самых современных связей иммунологии.
Как видите, все новые и новые связи. Надо сказать, что мы не можем упрекнуть в этом нашу иммунологию. Все эти союзы и сочетания очень многое дали и сугубо теоретической биологии, шагающей по ступеням познания, и сугубо практической медицине, спасшей уже много-много жизней.
Но иммунология еще далеко не исчерпала себя. Впереди ее ждут все новые и новые союзы, новые плоды совместных усилий ученых смежных наук.
Вот и новый союз.
Конечно, говорить «иммунология и космос» не совсем верно. Иммунология вступает в связь не с самим космическим пространством, а с другой научной отраслью. Не будем придираться к словам. Понятно, что речь идет о космической медицине и биологии самых последних лет.
Человек выглядывает из ракеты
В наиболее краткой и приближенной форме задачи космической медицины: обеспечение нормальной жизнедеятельности организма в герметически замкнутых пространствах кораблей; изучение влияния космического полета — невесомости, ускорения, космической радиации и других — на человека; обеспечение нормальной жизнедеятельности человека в условиях его будущего обитания на других планетах и небесных телах.
При этом возникает масса биологических проблем. А перед иммунологией встает вопрос поведения в необычайных условиях космического полета одной из важнейших систем человеческого организма — иммунологической системы защиты от микробов. Будет ли устойчивость организма к бактериям и вирусам столь же надежна, как в нормальных условиях жизни на Земле?
Этот вопрос может показаться излишним. Ведь и результаты известных всему миру космических полетов не дают оснований опасаться инфекционных осложнений. Космонавты отлично перенесли все условия полета. Правда, продолжительность этих полетов измерялась пока лишь днями или неделями.
Но нельзя забывать: мы живем в такое время, когда первый этап завоевания космоса — освоение и исследование околоземного космического пространства — завершается. Следующий этап — освоение ближайших небесных тел, в частности планет солнечной системы. А наименьшее из возможных расстояний от Земли до Марса — 78 миллионов километров.
С медико-биологической точки зрения главная особенность следующего этапа — длительность. Она-то во многом и определяет задачи, стоящие перед космической биологией и медициной. Космическая медицина и биология наших дней должны изучить и обеспечить длительные космические полеты, продолжающиеся недели, месяцы, годы. Пока главным образом изучали поведение организма при кратковременных перегрузках и невесомости, функциональные возможности и особенности сердечно-сосудистой, нервной и других систем в этих условиях, вопросы работоспособности, тренировки, психофизиологии, С наступлением эры длительных космических полетов возникают новые ведущие биологические проблемы. Таковыми являются, в частности, иммунологические проблемы: взаимодействие человеческого организма и микробов во внеземных условиях. Это уже целая отрасль науки — космическая иммунология.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.