Борис Медников - Дарвинизм в XX веке Страница 46
- Категория: Научные и научно-популярные книги / Биология
- Автор: Борис Медников
- Год выпуска: -
- ISBN: нет данных
- Издательство: -
- Страниц: 64
- Добавлено: 2019-02-05 14:01:40
Борис Медников - Дарвинизм в XX веке краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Борис Медников - Дарвинизм в XX веке» бесплатно полную версию:Учение Дарвина стоит на трех «китах» — трех основных факторах эволюции: наследственности, изменчивости и отборе. Выдержали ли эти «киты» натиск новых фактов, добытых науками нашего века — генетикой, молекулярной биологией, теорией информации? Кто прав — Дарвин или учитель Александра Македонского Аристотель? Есть ли прогресс в природе? Когда возник естественный отбор — вместе с жизнью или до нее?.. Обо всем этом и расскажет автор в данной книге, посвященной развитию учения об эволюции в XX столетии, борьбе материализма и идеализма в эволюционной теории.
Борис Медников - Дарвинизм в XX веке читать онлайн бесплатно
Реакции полимеризации, идущие с возрастанием молекулярного веса конечного продукта, происходят и в протоклетках, и в «первичном бульоне». Но в «первичном бульоне» результат таких реакций — лишь образование новых протоклеток. В протоклетке дело иное: если там уменьшается число молекул — а это и происходит, когда простые молекулы сливаются в более сложные — снижается осмотическое давление, которое зависит только от числа молекул, а не от их массы.
Второе начало термодинамики не может долго терпеть существующего перепада ни в чем — в том числе и в осмотическом давлении. Начинается перекачка молекул аминокислот, нуклеотидов, сахаров и т. д. в протоклетки. Когда отношение объема к поверхности становится критическим, увеличивающаяся протоклетка делится или почкуется, надстраивая при этом мембраны, — и процесс начинается сначала.
В результате протоклетки должны были перекачать в себя всю органику «первичного бульона». Но ясно, что они были отнюдь не однородными. В одних процессы синтеза шли быстрее, в других медленнее. «Быстрые» преуспевали, но это был еще не дарвиновский отбор, не жизнь! В них не было непременного атрибута жизни — наследственности. Удачные комбинации молекул, приводящие к быстрому синтезу, в процессе роста и деления «разводились» и исчезали. Так было до тех пор, пока в одной из протоклеток не сформировалась нуклеотидная цепочка, способная реплицировать себя.
Разумеется, этот процесс еще не напоминал современный механизм репликации ДНК. Ведь ферментов еще не было, не было и рибосом, и транспортных РНК. Были лишь короткие, порядка 10–20 звеньев, цепочки нуклеиновых кислот и пептидов, образовывавшие комплексы между собой.
Здесь уместно вспомнить о старом споре схоластов: что появилось раньше — яйцо или курица, трансформировавшемся в наше время в спор: что было раньше — ген или фермент? Казалось бы, мы попадаем в замкнутый круг — ведь ДНК не может удваиваться без фермента ДНК-полимеразы, а он сам в свою очередь не может возникнуть без ДНК. Спорщики в пылу дискуссии забывали об одном обстоятельстве. Фермент, как и всякий катализатор, не может сделать невозможную реакцию возможной. Он лишь ускоряет ход возможной реакции, сдвигая ее равновесие в сторону образования конечного продукта. Кроме того, наводит на размышление то, что большинство ферментов — комплексы, состоящие из белковой части, с одной стороны, и простого органического соединения (кофермента) или иона металла, — с другой. Возможность абиогенного синтеза ряда коферментов доказана, а уж ионы металлов в «первичном бульоне», несомненно, были. Не они ли в комплексе с короткими полипептидами играли роль ферментов? Эффективность действия таких проферментов, разумеется, нельзя сравнить с современными; вряд ли они обладали специфичностью действия. Но ведь и вся наша изощренная техника ведет начало от каменного рубила питекантропа, которым можно было, правда, с трудом, выполнять разнообразные операции.
Как только в протоклетке сформировался протоген, дупликация (удвоение) которого катализировалась проферментами, полпути до настоящей живой клетки было уже проделано. По-видимому, в это же время сформировался энергетический механизм, близкий к современному, с использованием богатых энергией связей аденозинтрифосфата и гуанозинтрифосфата. До того протоклетки использовали, скорее всего, энергию гидролиза полифосфатов. Исследования последних лет показывают, что этот процесс наиболее вероятен.
Дупликация протогена, помимо того, что она обеспечила устойчивый процесс синтеза, передающийся по наследству (отчего потомки этих протоклеток получили широкое распространение), привела к весьма важным последствиям. Одно из них — возникновение оптической активности, точнее, асимметрии биологических молекул.
Первым открытием великого французского ученого Луи Пастера была именно асимметрия биомолекул — и, не сделай он кроме этого больше ничего, бессмертие было ему обеспечено. Суть этого открытия сводится к тому, что асимметричные молекулы Сахаров, аминокислот и многих других органических веществ существуют в двух формах — левой и правой, отличающихся друг от друга так же, как левая рука отличается от правой руки. Хотя термодинамически обе модификации совершенно одинаковы и при абиогенном синтезе и та и другая возникает с одинаковой частотой, организмы используют только одну: так, аминокислоты в белках всех живых организмов — левые. Исключения редки и подтверждают правило — таковы правые аминокислоты в антибиотике грамицидине, синтезирующемся нематричным, не-рибосомным путем. Некоторые микробы, например чумная палочка, строят оболочки своих клеток из полимеров правых аминокислот, неуязвимых для защитных белков хозяина.
Объяснений этому факту было выдвинуто немало, и весьма хитроумных. Автор этих строк склоняется к самому простому: эта унификация необходима для матричного синтеза. Как может дуплицироваться протоген, если он состоит из правых и левых пентоз, отчего азотистые основания торчат в разные стороны и двойная спираль возникнуть не может? Кроме того, унификация весьма ускорила процессы синтеза. Представьте машину, собранную на болтах с правой и левой резьбой вперемежку. Собирать ее монтажнику было бы сущей мукой.
Да, но почему наши аминокислоты левые, а не правые? Вот тут уже придется признать, что это произошло случайно. Но случайность эта того же порядка, как и правостороннее движение на дорогах Европы. Нужно было выбрать одно из двух — и жизнь выбрала левые аминокислоты и правые сахара. Будь выбор обратным, ничего бы страшного не случилось. Ездят же в Англии по левой стороне дороги с таким же успехом, как на континенте — по правой.
Следующий важный этап на пути становления жизни — это возникновение генетического кода и биосинтеза белков (до того прото-клетки обходились пептидами абиогенного происхождения, вроде полученных в опытах Фокса). Разумеется, сложный рибосомный аппарат не мог возникнуть сразу — сначала были простейшие комплексы коротких пептидов и коротких нуклеотидных цепочек, причем последние могли играть роль и гена, и транспортной РНК, и рибосомной РНК, подобно тому, как листовидные конечности низшего рачка одновременно служат для движения, дыхания и захвата пищи. Но на этой стадии уже действовал самый настоящий естественный отбор на скорость биосинтеза, и разделение функций должно было произойти за немногие миллионы лет.
Здесь сработал известный в кибернетике принцип прямой обратной связи, необычайно, в сотни и тысячи раз ускоряющий любой процесс — будь то скат горной лавины или деление атомов урана б атомной бомбе. Каждый удачный шаг на пути становления биосинтеза повышал шансы протоклетки на дальнейшее деление и размножение, стимулировал второй шаг и т. д. и т. д. — подобно тому, как в сконструированном нами примере удачный выбор одной фишки повышает шансы на скорейшее получение следующих.
Возникновение генетического кода — соответствия между триплетами нуклеотидов в нуклеиновых кислотах и аминокислотами в пептидных последовательностях еще не расшифровано до конца. Однако, анализируя этот вопрос, Ф. Крик приходит к выводу, что это был последовательный процесс, в котором первый шаг повышал вероятность второго и т. д. Именно с возникновением кодирования жизнь стала жизнью: появились первые бактериальные клетки.
Поэтому мы можем сказать, что синтезировали жизнь в пробирке лишь тогда, когда воспроизведем в лаборатории процесс возникновения кода. Важно подчеркнуть еще одно — единство генетического кода у всех живых существ на Земле, от вируса до человека, свидетельствует об одном: жизнь на Земле возникла только один раз, и первые живые клетки стремительно вытеснили всех своих отставших в развитии современников.
К тому же этапу относится становление фотосинтеза — основного поставщика энергии для земной жизни. В это время, как мы уже упоминали, протоклетки «перекачали» в себя всю органику «первичного бульона». Новые органические вещества возникали с гораздо меньшей скоростью. Широко распространен взгляд, что весь кислород на Земле — фотосинтетического происхождения. Вряд ли это так: с момента становления атмосферы в ней непрерывно шел медленный процесс накопления кислорода за счет разложения паров воды жестким ультрафиолетовым излучением. При этом кислород оставался, а водород улетучивался в космическое пространство. Как только концентрация кислорода повысилась настолько, что смог возникнуть слой озона, поглощающий жесткое ультрафиолетовое излучение Солнца, исчез главный источник энергии для абиогенного синтеза органики. Кроме того, кислород пресекал его, окисляя вновь возникающие продукты. Из восстановительной атмосфера Земли стала окислительной.
Основа фотосинтеза — разложение воды на составные элементы с помощью пигментной системы, захватывающей кванты света и трансформирующей свободные электроны. Хлорофилл — кормилец всего сущего на Земле — сам продукт длительной эволюции. Первыми трансформаторами света в энергию были гораздо более простые пигменты — порфирины, легко синтезируемые абиогенным путем, вернее, их комплексы с ионами металлов. Основа самого хлорофилла — порфириновое кольцо в комплексе с магнием. С возникновением первых фотосинтезирующих организмов — пигментных бактерий и сине-зеленых водорослей — приток кислорода в атмосферу возрос на много порядков, и состав ее очень быстро приблизился к современному. Вряд ли нарисованная картина удовлетворит всех читателей. Что поделаешь — при возникновении жизни никто из нас не присутствовал. Тем не менее, я хотел бы подчеркнуть два обстоятельства:
Жалоба
Напишите нам, и мы в срочном порядке примем меры.