Юрий Александров - Основы психофизиологии - Александров Ю.И. (ред.) Страница 8
- Категория: Научные и научно-популярные книги / Биология
- Автор: Юрий Александров
- Год выпуска: -
- ISBN: нет данных
- Издательство: -
- Страниц: 113
- Добавлено: 2019-02-05 13:59:16
Юрий Александров - Основы психофизиологии - Александров Ю.И. (ред.) краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Юрий Александров - Основы психофизиологии - Александров Ю.И. (ред.)» бесплатно полную версию:В учебнике «Основы психофизиологии» раскрыты все темы, составляющие в соответствии с Государственным образовательным стандартом высшего профессионального образования содержание курса по психофизиологии, и дополнительно те вопросы, которые представляют собой «точки роста» и привлекают значительное внимание исследователей. В учебнике описаны основные методологические подходы и методы, разработанные как в отечественной, так и в зарубежной психофизиологии, последние достижения этой науки.Настоящий учебник, который отражает современное состояние психофизиологии во всей её полноте, предназначен студентам, аспирантам, научным сотрудникам, а также всем тем, кто интересуется методологией науки, психологией, психофизиологией, нейронауками, методами и результатами объективного изучения психики.
Юрий Александров - Основы психофизиологии - Александров Ю.И. (ред.) читать онлайн бесплатно
Следует лишь отметить, что и методы получения определённых феноменов в ЭЭГ, и методы анализа ЭЭГ определяются задачей исследования и методологией, которой придерживается тот или иной исследователь.
Рис. 2.4. Артефакты на электроэнцефалограмме:
1,2,3 - электродные артефакты; 4 – посторонние электрические помехи; 5 – артефакты, вызванные движением испытуемого; 6, 7 – мышечные потенциалы, вызванные напряжением мышц корпуса и сморщиванием лба соответственно; 8 – кожные потенциалы; 9 - моргание; 10- электрокардиограмма на фоне элетроэнцефалограммы; 11 – пульсовые волны [Егорова, 1973]
3. МАГНИТОЭНЦЕФАЛОГРАФИЯ
Активность мозга всегда представлена синхронной активностью большого количества нервных клеток, сопровождаемой слабыми электрическими токами, которые создают магнитные поля. Регистрация этих полей неконтактным способом позволяет получить так называемую магнитоэнцефалограмму (МЭГ). МЭГ регистрируют с помощью сверхпроводящего квантового интерференционного устройства – магнетометра. Предполагается, что если ЭЭГ больше связана с радиальными по отношению к поверхности коры головного мозга источниками тока (диполями), что имеет место на поверхности извилин, то МЭГ больше связана с тангенциально направленными источниками тока, имеющими место в корковых областях, образующих борозды (рис. 2.5). Если исходить из того, что площадь коры головного мозга в бороздах и на поверхности извилин приблизительно одинакова, то несомненно, что значимость магнитоэнцефалографии при изучении активности мозга сопоставима с электроэнцефалографией. Как следует из рис. 2.5, электрическое и магнитное поля взаимоперпендикулярны, поэтому при одновременной регистрации обоих полей можно получить взаимодополняющую информацию об исходном источнике генерации тех или иных потенциалов [Хари, Каукоранта, 1987]. МЭГ может быть представлена в виде профилей магнитных полей на поверхности черепа либо в виде кривой линии, отражающей частоту и амплитуду изменения магнитного поля в определённой точке скальпа. МЭГ дополняет информацию об активности мозга, получаемую с помощью электроэнцефалографии.
4. ПОЗИТРОННО-ЭМИССИОННАЯ ТОМОГРАФИЯ МОЗГА
В современных клинических и экспериментальных исследованиях всё большее значение приобретают методы, дающие визуальную картину мозга субъекта в виде среза на любом уровне, построенную на основе метаболической активности отображённых на этой картине структур. Одним из наиболее результативных методов в плане пространственного разрешения изображения является позитронно-эмиссионная томография мозга (ПЭТ). Техника ПЭТ заключается в следующем. Субъекту в кровеносное русло вводят изотоп, это кислород-15, азот-13 или фтор-18. Изотопы вводят в виде соединения с другими молекулами. В мозге радиоактивные изотопы излучают позитроны, каждый из которых, пройдя через ткань мозга примерно на 3 мм от локализации изотопа, сталкивается с электроном. Столкновение между материей и антиматерией приводит к уничтожению частиц и появлению пары протонов, которые разлетаются от места столкновения в разные стороны теоретически под углом в 180° друг к другу. Голова субъекта помещена в специальную ПЭТ-камеру, в которую в виде круга вмонтированы кристаллические детекторы протонов. Подобное расположение детекторов позволяет фиксировать момент одновременного попадания двух «разлетевшихся» от места столкновения протонов двумя детекторами, отстоящими друг от друга под углом в 180°.
Рис. 2.5. Схема магнитных и электрических полей головного мозга:
1 – тангенциальное к поверхности скальпа направление тока в борозде создаёт магнитное поле (2), улавливаемое магнетометром, перпендикулярное положению электрического диполя; 2– направление силовых линий магнитного поля определяется «правилом правой руки», ладонная поверхность разогнутой кисти которой обращена к объекту: когда ток течёт в направлении большого пальца правой руки, линии магнитного поля следуют в направлении остальных пальцев; 3 и 4 – электрические поля (диполи), регистрируемые электроэнцефалографическим методом; а – скальп; б– череп; в – кора головного мозга
Наиболее часто применяют лиганд F18 – дезоксиглюкозу (ФДГ). ФДГ является аналогом глюкозы. Области мозга с разной метаболической активностью поглощают ФДГ соответственно с разной интенсивностью, но не утилизируют её. Концентрация изотопа F18 в нейронах разных областей увеличивается неравномерно, следовательно и потоки «разлетающихся» протонов на одни детекторы попадают чаще, чем на другие. Информация от детекторов поступает на компьютер, который создаёт плоское изображение (срез) мозга на регистрируемом уровне. Кроме того, два других изотопа применяются в ПЭТ также для определения метаболической активности.
5. ОКУЛОГРАФИЯ
Движения глаз являются важным показателем в психофизиологическом эксперименте. Регистрация движений глаз называется окулографией.
С одной стороны, окулографический показатель необходим для выявления артефактов от движений глаз в ЭЭГ (см. рис. 2.4), с другой стороны, этот показатель выступает и как самостоятельный предмет исследования, и как составляющая при изучении субъекта в деятельности. Амплитуду движения глаз определяют в угловых градусах. Существует восемь основных видов движений глаз [Барабанщиков, Милад, 1994]. Три движения – тремор (мелкие, частые колебания амплитудой 20–40 угловых секунд), дрейф (медленное, плавное перемещение глаз, прерываемое микроскачками) и микросаккады (быстрые движения продолжительностью 10–20 мс и амплитудой 2–50 угловых минут) относят к микродвижениям, направленным на сохранение местоположения глаз в орбите.
Из макродвижений, связанных с изменением местоположения глаз в орбите, наибольший интерес в психофизиологическом эксперименте представляют макросаккады и прослеживающие движения глаз. Макросаккады отражают обычно произвольные быстрые и точные смещения взора с одной точки на другую, например при рассматривании картины, при быстрых точностных движениях руки (рис. 2.6) и т.д. Их амплитуда варьирует в пределах от 40 угловых минут до 60 угловых градусов. Прослеживающие движения глаз – плавные перемещения глаз при отслеживании перемещающегося объекта в поле зрения. Амплитуда прослеживающих движений ограничивается пределами моторного поля глаза (плюс-минус 60 угловых градусов по горизонтали и плюс-минус 40 угловых градусов по вертикали). В основном прослеживающие движения глаз носят непроизвольный характер, начинаются через 150–200 мс после начала движения объекта и продолжаются в течение 300 мс после его остановки.
Наиболее распространённым методом регистрации движений глаз является электроокулография. По сравнению с другими окулографическими методами, такими, как фотооптический, фотоэлектрический и электромагнитный, электроокулография исключает контакт с глазным яблоком, может проводиться при любом освещении и тем самым не нарушает естественных условий зрительной активности. В основе электроокулографии лежит дипольное свойство глазного яблока – его роговица имеет положительный заряд относительно сетчатки (корнеоретинальный потенциал). Электрическая и оптическая оси глазного яблока практически совпадают, и поэтому электроокулограмма (ЭОГ) может служить показателем направления взора [Барабанщиков, Милад, 1994]. При движении глаза угол его электрической оси изменяется, что приводит к изменению потенциалов, наводимых диполем глазного яблока на окружающие ткани. Именно эти потенциалы регистрируются электроокулографическим методом.
Две пары неполяризующихся отводящих электродов с электропроводной пастой накладывают на обезжиренные участки кожи в следующих точках: а) около височных углов обеих глазных щелей – для регистрации горизонтальной составляющей движений; б) посередине верхнего и нижнего края глазной впадины одного из глаз – для регистрации вертикальной составляющей движений. Контактное сопротивление на электродах (до 10 кОм), как правило, позволяет избегать артефактов от ЭЭГ и мышечной активности. Потенциалы, снимаемые между электродами в каждой паре, усиливаются и поступают на монитор, а затем записываются на магнитные носители магнитофона или ЭВМ.
Рис. 2.6. Координированные движения глаз и головы в сторону появившегося в боковом поле зрения светового пятна:
Электромиографическая активность, зарегистрированная с левой латеральной прямой мышцы головы ( B), с правой (Г) и с левой (Д) ремённых мышц головы при горизонтальном повороте глаз (А) и головы (B). Калибровка времени – 100 мс; калибровка движений глаз – 10 угл. град.; калибровка движений головы – 20 угл. град. [Bizzi et. аl., 1972]
Жалоба
Напишите нам, и мы в срочном порядке примем меры.