Андрей Журавлёв - До и после динозавров Страница 8

Тут можно читать бесплатно Андрей Журавлёв - До и после динозавров. Жанр: Научные и научно-популярные книги / Биология, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Андрей Журавлёв - До и после динозавров

Андрей Журавлёв - До и после динозавров краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Андрей Журавлёв - До и после динозавров» бесплатно полную версию:
Автор книги пытается изложить понятным языком достижения современной палеонтологии — науки, изучающей историю жизни на Земле. Нынешняя палеонтология требует прочных знаний законов физики и химии, умения считать (и не только на пальцах), глубокого понимания методов статистики, не говоря уже о разделах современной биологии. Эта наука смело вмешивается в дела планетарной физики и движения материков, загоняет в тупик своими открытиями биологов. Она способна не только рассказать о том, как выглядела Земля в отдаленном прошлом, но и о том, что произойдет с нашей планетой в будущем. Под одной обложкой собраны наиболее интересные сведения о тех, кто населял нашу планету в течение почти четырех миллиардов лет.

Андрей Журавлёв - До и после динозавров читать онлайн бесплатно

Андрей Журавлёв - До и после динозавров - читать книгу онлайн бесплатно, автор Андрей Журавлёв

Почти не меняясь внешне, они тем не менее полностью изменились внутренне. В исключительно чистых лабораториях потомки одной и той же бактерии становятся иными за несколько тысяч поколений. Многие изменения налицо. (Или что у них там?) Преображается и поведение. Разнообразие возникает буквально из ничего. Через некоторое время после начала опыта в чашке с культурой бактерий можно увидеть три отдельные группы. Одни останутся лежать на дне. Другие всплывут к поверхности. Третьи распределятся в толще предоставленной им среды. Иными словами, они заполняют все возможные для существования ниши. И в каждой из них новое поколение все более эффективно потребляет предложенный субстрат.

То же происходило в раннем протерозое. Большинство сообществ раннего и начала позднего протерозоя состояло из простых внешне форм. Они занимали практически все свободное пространство на море и, возможно, на суше.

Окремнелые останки живых существ обнаружены более чем в тысяче местонахождений этого периода. Среди них особенно много встречается тел простой округлой формы размером до 0,025, реже до 0,04 мм в поперечнике. Можно встретить тонкие нити с перегородками, трубки и ветвящиеся нити. Многие из них напоминают современных цианобактерий. На периодически осушаемом мелководье обитали самые заурядные округлые формы золотисто-коричневой окраски от пигмента сцитонемина, предохранявшего бактерий от ультрафиолетовых лучей. Он настолько устойчив, что не распался до сих пор. Дальше от берега образовывали густые заросли нитчатые цианобактерии, среди которых скользили совсем мелкие, похожие на пружинки, осцилляториевые. Разница между крайним мелководьем и морскими условиями проявлялась только в увеличении многообразия бактерий по мере улучшения самих условий.

В отдалении от бактериальных сообществ селились первые эукариоты. Тогда это были очень незатейливые шаровидные клетки. Время соперничества с бактериями за лучшие местообитания для них еще не наступило.

Держи карман шире

Около 2 млрд лет назад атмосфера была бескислородной, а кислород накапливался только в полостях-карманах микробных сплетений. С установлением кислородной атмосферы бактериальные сообщества «вшили» бескислородные карманы, где разлагалось органическое вещество. Впрочем, водная толща океана еще долго могла быть бескислородной, и на дне (как в Черном море) отлагались черные пахучие илы.

В этот период в ископаемой летописи начинают попадаться остатки эукариот. Эукариоты — это организмы, обладающие ядром (хранилищем генов), сложными клеточными органеллами (своеобразными органами клетки) и более совершенным способом полового размножения, когда наследственный материал сосредоточен в расходящихся парных хромосомах.

В породах возрастом около 2,1 млрд лет, найденных в Северной Америке, обнаружены изгибающиеся, слегка закрученные ленты до полуметра длиной. Скорее всего, это были водоросли. Не исключено, что эукариоты меньших размеров существовали и несколько раньше, но распознать их среди прочих ископаемых остатков совершенно невозможно. Но все, что превышало в поперечнике 0,75 мм (наибольший размер современных бактерий), скорее всего, было не бактериями.

Эукариоты не могли не появиться. Уже устойчивое микробное сообщество, каждый член которого отвечал за строго определенный участок работы, отличалось цельностью. Возможно, что дальнейшее усиление связей между его членами и привело к эукариотам. Отдельные органеллы эукариот очень похожи на некоторых бактерий. Митохондрии (греч. «нить» и «зернышко»), которые обеспечивают клетку энергией, близки к пурпурным несерным эубактериям. Поэтому почти все эукариоты дышат кислородом.

Хлоропласты (греч. «зеленый комок») напоминают цианобактерии и зеленых бактерий. Обладающие ими водоросли и высшие растения стали фотосинтетиками. Полное отчуждение, правда, не преодолено до сих пор. Хлоропласты (чтобы чего не вышло) укутаны в несколько оболочек. Жгутики, с помощью которых одноклеточные эукариоты двигаются, могли возникнуть при захвате спирохет или спироплазм (скрученных, способных к вращательному движению бактерий). Если у одноклеточных жгутики являются движителем (иногда органами захвата), то жизнь многоклеточных без них и представить трудно. На основе жгутика развились все органы чувств и передачи информации: вкусовые и обонятельные волоски, органы равновесия и нервные пучки.

Правильно распределить хромосомы при делении клетки тоже помогают преобразованные жгутики (отсюда и название такого деления — «митоз» — греч. «нить»). Митоз появился у одноклеточных эукариот, а на его основе возник мейоз (греч. «убывание»). Ядра большинства животных и растений содержат два почти одинаковых набора хромосом (до миллиона генов в наборе). При митотическом делении каждая дочерняя клетка получает в наследство по одной копии любой родительской хромосомы, а при мейозе — половину родительских хромосом. Для обретения двойного набора ей приходится слиться (вступить в половые отношения) с другой клеткой. Оплодотворение обеспечивает обмен участками хромосом. В итоге наследство прирастает за счет состояния каждого из родителей.

Обмен генами позволил эукариотам эволюционировать намного быстрее, в то же время сохраняя все наилучшее от своих предков. (Тот, кто пытался сохранить все самое худшее, просто вымер.)

Предоставить жилплощадь для поселения всех бактериальных соседей могли магниточувствительные бактерии, о которых говорилось в предыдущей главе. Клетка у них весьма просторная — целых 0,015 мм. Она окружена двухслойной жировой оболочкой — будущий клеточный скелет. Но главное — она хорошо принимает гостей (не переваривает их сразу). Кроме того, запас железа, необходимого для удвоения хромосом и деления клетки, уже имеется. Воедино могли сойтись протеобактерии, преобразующие органику в водород и двуокись углерода и нуждающиеся в этих газах метанообразующие архебактерии. (Так что все ныне живущее на Земле, включая людей, представляет собой лишь колонии бактерий.)

Еще в V веке до н. э. греческий философ Эмпедокл предположил, что носы, ноги, руки жили сначала отдельно друг от друга. Они встретились, срослись и превратились в животных. Так и разные ветви бактерий образовали тесные сообщества, из которых могли выйти готовые эукариотные организмы. Для того чтобы заставить различные, прежде обособленные бактерии жить вместе, потребовался лишь механизм управления разрозненной наследственной информацией.

Мир эукариот действительно представлял собой мир прокариот наоборот. Прокариоты, не отличаясь внешне, биохимически были очень разнородны. Они потребляют что угодно, будь то сероводород, азот или метан. Эукариоты ограничились только фотосинтезом и поеданием уже готовых запасов питательного вещества в виде других организмов. Но внешние различия у них просто поразительны. Достаточно назвать трех обычных эукариот, чтобы убедиться в этом: например, мухомор, таракан и человек.

Способность управлять органеллами различного происхождения пригодилась при становлении многоклеточных. С помощью многоклеточности эукариоты преодолели тесные размерные пределы. Они разменяли маленькую однокомнатную квартиру (пусть и со всеми удобствами) на замки и виллы любой, сколь угодно сложной архитектуры и почти неограниченного объема. У многоклеточных стало возможным распределение клеток по слоям и зарождение тканей. Одни клетки при этом оказались всегда крайними и образовали покровную ткань. Другим, что очутились внутри, осталось одно — размножаться дальше. До некоторой степени многоклеточность была вызвана именно зовом пола. Большинство многоклеточных организмов крупнее одноклеточных, а большого партнера видно издалека. (Несколько сантиметров в длину или в поперечнике — таков предел и удел самостоятельных одноклеточных организмов.)

Неслучайно многоклеточность возникала постоянно и неоднократно: у красных, бурых и желто-зеленых водорослей, в нескольких группах водорослей зеленых и, конечно, у животных и тоже, может быть, не единожды. Но главное — со временем многоклеточные организмы становились все менее зависимы от капризов среды.

Полет валькирии

С середины протерозоя (1,2 млрд лет назад) разнообразие эукариот стало постепенно возрастать. Около 800 млн лет назад господство микробов, длившееся почти 3 млрд лет, закончилось. Начиная с этого времени возникли все основные группы водорослей и простейших, а также предки грибов и животных.

В окаменелостях древнейших многоклеточных распознаются красные водоросли. Они совершенно не отличимы от современных водорослей (хотя извлечены из отложений возрастом 1,2 млрд лет) Арктической Канады. Каждый, кто побывал на море, видел камни, покрытые красными известковыми наростами. Кому посчастливилось загорать на теплом южном взморье, мог подобрать изящные пурпурные веточки, похожие на мелкие кораллы. Так выглядят кораллиновые красные водоросли. Их необызвествленные родственники не столь ярки и приметны — просто невзрачные ворсинки. Но именно такие ворсинки покрыли дно морей 1,2 млрд лет назад. Несмотря на свои размеры (меньше 2 мм высотой), они создали новый, трехмерный мир, недоступный плоским бактериальным матам. Это был мир со своими течениями и осадками. Со временем в нем поселились другие многоклеточные. Собственно багрянки являются древнейшими организмами с клетками разного типа и с чередованием полового и бесполого поколений (половым циклом). Впрочем, половой цикл и предопределил возникновение многоклеточности — ведь специальные половые клетки уже отличались от всех прочих.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.