Борис Медников - Аналогия Страница 8

Тут можно читать бесплатно Борис Медников - Аналогия. Жанр: Научные и научно-популярные книги / Биология, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Борис Медников - Аналогия

Борис Медников - Аналогия краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Борис Медников - Аналогия» бесплатно полную версию:
От редакции журнала «Человек»:  Борис Михайлович Медников был одним из первых авторов нашего журнала. Тогда его чрезвычайно занимала идея схожести биологической и культурной эволюции человечества, и он написал для нас первую статью на эту тему «Гены и мемы — субъекты эволюции» (№4,1990), которая до сих помнится многим читателям. Потом он увлекся и с головой погрузился в проблемы СПИДа, казалось, отойдя от любимой темы. Но, как выяснилось недавно, в 1991—1992 годах он начал писать книгу, три главы которой, готовые к печати, сохранились в его архиве. Мы с радостью их публикуем.

Борис Медников - Аналогия читать онлайн бесплатно

Борис Медников - Аналогия - читать книгу онлайн бесплатно, автор Борис Медников

Глава II.

О ДНК эгоистичной, паразитической, избыточной и мусорной

Порой мне приходится употреблять слово «информация» в журналистском понимании («информация к размышлению»). И каждый раз ловлю себя на том, что пишу и произношу его с неохотой. Это ведь ключевой термин новой науки — теории информации, и его нехорошо поминать всуе. Между информацией, которой посвящена одноименная теория, и расхожим толкованием этого слова общего столько же, сколько между философским понятием материи и той материей, из которой шьют брюки.

Меня коробят выражения вроде «организмы питаются информацией» или же «организмы заключают в себе запас информации». Это по меньшей мере неточно. Организмы не содержат информации: они слагаются из более или менее сложных структур, упорядоченных совокупностей элементов. Вот как раз сложность этих структур можно описать соответствующим объемом информации, и теория, ей посвященная, рассказывает, как это сделать.

Также нельзя говорить, что организмы «питаются информацией». Чужая информация, да и чужая структура, организму не нужна, он по мере сил борется с ней. В этом и заключается причина отторжения пересаженных органов и тканей. Всю сложность своей структуры организм создает сам — за счет химической энергии питательных веществ, как животные, и энергии света, как растения.

Но откуда он берет сведения о своей сложности? Вот тут-то термин «информация» становится необходим. Ведь этот термин, который в наше время у всех на языке и слуху, реже на уме, — характеристика не системы (скажем, живого организма или ежедневной газеты), а сигнала. Точнее, соотношения между передатчиком сигнала и его приемником:

передатчик → канал передачи информации → приемник

Отвлечемся, для начала, от материального воплощения сигнала — будь то радиоволны, звуковые волны, слова на бумаге, рисунки на камне или соответствующие сочетания нуклеотидов в нуклеиновых кислотах. Сначала поговорим о том, как можно измерить информационное содержание сигнала.

Основоположник теории информации К. Шеннон дал формулу, которая в настоящее время во всей человеческой деятельности играет столь же важную роль, как и эйнштейновская Е = mc²:

Н = — k ∑pi log(pi)

Здесь pi — вероятность состояния системы, о котором сообщается в сигнале, log(pi) — логарифм этой вероятности и k — коэффициент пропорциональности, т. е. постоянная, определяющая единицу измерения. Н — принято называть энтропией источника сообщений, иногда просто информацией.

Эта формула очень похожа на формулу энтропии в статистической физике. Однако k там — константа Больцмана (1,37x10-16 эрг/градус). В теории информации принято двоичное исчисление и логарифмы при основании 2. Тогда k = 1 и единица измерения Н — биты (сокращенное binary digits, двоичные единицы — не путать с байтами!). Один бит — столько информации содержится в ответе на вопрос: «Кто родился: мальчик или девочка?»

В передаваемой по каналу связи информации выделяются тексты, которые можно разбить на символы, и каждому символу придать значение (энтропия на символ).

Так, если бы в тексте на русском языке все буквы, включая знаки препинания и пробел между словами (32 символа), встречались с равной частотой, информационная емкость русского алфавита равнялась бы:

-∑1/32 log2l/32 = log32 = 5 бит/символ

Обычно она гораздо меньше. 5 бит/символ — это предельная величина. Но во всех реальных текстах символы встречаются с разной частотой, и энтропия обычно меньше, примерно в 2,5 раза, и приближается к двум битам на символ. Отсюда можно подсчитать и объем информации в тексте. Например, в авторском листе (единице объема рукописей) 40 000 символов и, значит, 80 000 бит информации. Но опять же это верхний предел, эта цифра имеет значение для наборщика и корректора, но не читателя. Далее мы еще вернемся к этому.

А пока ответим на вопрос: откуда развивающийся организм берет сведения о своей сложности? Ответ однозначен — из своей генетической программы, из ДНК. В ДНК «генетический текст» закодирован четырьмя символами — аденином, гуанином, цитозином и тимином. При равной частоте встречаемости символов энтропия на символ равна:

Н = — 4(0,25 log2 0,25) = 2

То есть тексты, написанные русским языком, и текст нашей генетической программы обладают примерно равной информационной емкостью. В геноме каждого из нас содержится примерно 3,2x109 нуклеотидов; соответственно объем содержащейся в нем информации 6,4x109 бит. Любители считать могут прикинуть, библиотеке какого объема это соответствует, только пусть помнят, что в выходных данных книги указываются не авторские листы, а печатные.

Значит, им нужно сначала подсчитать число символов на страницу текста книги данного формата и умножить на число страниц. Но все эти подсчеты будут сугубо приближенные: и в случае с ДНК два бита/символ — недостижимый максимум.

Кроме того, надо учесть одно обстоятельство: чтобы превратиться в признаки и свойства организма, генетическая информация перекодируется, проходя по каналу:

ДНК → РНК → белок

Передатчик этой информации — хромосома, приемник — цитоплазма клетки, в которой синтезируется белок. А уж от набора белковых молекул и их количества зависит дальнейшая судьба клетки и всего организма.

Первый этап перекодировки ДНК → РНК не изменяет информационной емкости сигнала. Ведь нуклеотидный текст остается без изменения, только тимин заменяется на урацил. А это тот же тимин, только неметилированный (без группы СН3). Зато перекодировка нуклеотидного текста информационной РНК в аминокислотную последовательность белка весьма существенна.

Сейчас и в школе учат, что одна аминокислота, точнее, один аминокислотный остаток в полипептидной цепи, образующей белок, соответствует трем нуклеотидам в информационной РНК. Возможное число сочетаний из 4 по 3 — это 43, т. е. 64 символа. Если бы в наших белках было 64 аминокислоты, то энтропия на символ равнялась бы:

H = -64(1/64 log2 1/64) = 6,1 бит

Но три символа (тройки нуклеотидов, триплеты, кодоны) — бессмысленны, они аминокислот не кодируют. На них синтез полипептидной цепи обрывается, они соответствуют пробелам между словами в печатной речи и паузам — в устной. А аминокислот в белковом тексте всего 20, причем, каждая из них кодируется разным числом триплетов. Лейцин, серии, аргинин — эти буквы белкового текста кодируются каждый шестью триплетами, а метионин и триптофан — только одним триплетом каждый. Такой код называется вырожденным.

Аналогию можно найти и в человеческих языках. В старой русской орфографии звук «эф» выражался двумя символами — Ф и Θ (ферт и фита), звук «и» — тремя: и, i, (ижица). И в орфографиях других языков встречается вырожденность кода: например, англичане звук «и» выражают через i (в начале слов, заимствованных из других языков), через е (the evening, вечер), через дифтонг ее (the speed, скорость), через еа (dean, декан), через у (prosperity). Я не останавливаюсь здесь на делении гласных на краткие и долгие; для нас это сейчас не имеет значения. Как возникла в процессе эволюции вырожденность генетического кода — неясно. Может быть, на заре жизни аминокислот в белках было больше, чем сейчас? Впоследствии часть из них выпала, а их кодоны захватили другие аминокислоты, близкие по свойствам. Но это только гипотеза, если не спекуляция.

Вернемся, однако, к энтропии на символ для белкового текста. С учетом вырожденности кода эта величина, по моим давним подсчетам, равна 4,21 бит/аминокислотный остаток. Но это опять же с допущением, что все остатки в белке встречаются с одинаковой частотой. А это далеко не так. Если учтем данные по аминокислотному составу белков, получается величина примерно в два раза меньшая — у меня получалось 2,17-2,38 бит. Разумнее все же считать эту цифру завышенной, так как я исходил из того, что, например, все шесть кодонов для аргинина встречаются с одинаковой частотой. Два бита на символ — величина, наиболее подходящая для белка.

А сколько белков может синтезировать наш организм? Решая эту проблему, исследователи столкнулись с парадоксом, получившим название «парадокса лишней ДНК» (она же «эгоистичная, паразитическая, избыточная и мусорная»). О ней-то сейчас и пойдет речь.

О преимуществе вируса перед человеком. Два обстоятельства, на мой взгляд, привели к тому, что значительная часть исследователей по сие время теряет время в пустых вычислениях и бессмысленных спорах.

Первое — то, что мы привыкли считать: ген — это та последовательность нуклеотидов в ДНК, которая кодирует белок. Отсюда стандартное изречение: один ген — один белок.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.