Джонджо МакФадден - Жизнь на грани Страница 9
- Категория: Научные и научно-популярные книги / Биология
- Автор: Джонджо МакФадден
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 88
- Добавлено: 2019-02-05 14:21:56
Джонджо МакФадден - Жизнь на грани краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Джонджо МакФадден - Жизнь на грани» бесплатно полную версию:Жизнь — самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира. В ней авторы рассматривают как новейшие экспериментальные данные, так и открытия с переднего края науки, и делают это в неповторимо доходчивом стиле. Джим Аль-Халили и Джонджо Макфадден рассказывают о недостающем компоненте квантовой механики; феномене, который лежит в основе этой самой таинственной из наук.
Джонджо МакФадден - Жизнь на грани читать онлайн бесплатно
Триумф машин
Древние представления о том, что все живые существа одушевлены некой сверхъестественной субстанцией или сущностью, послужили своего рода объяснением удивительных различий между живой и неживой материей. Жизнь — нечто принципиально иное, поскольку ею движет духовное начало, а не какие-то банальные механические силы. Но этого объяснения было недостаточно, как если бы мы взялись утверждать, что Солнце, Луна и звезды движутся потому, что их толкают ангелы. На самом деле это и не было объяснением, поскольку природа души (как, собственно, и ангелов) оставалась неразрешимой загадкой.
В XVII веке французский философ Рене Декарт предложил радикально новый, альтернативный взгляд на живую материю. Он был впечатлен механическими часами, игрушками, заводными куклами, которыми в то время развлекались дети европейских знатных семейств. Механизмы, встроенные в эти устройства и игрушки, так вдохновили Декарта, что он высказал революционную для своего времени мысль: организмы растений и животных, в том числе и человека, представляют собой не что иное, как сложно устроенные машины. Эти машины состоят из обычных материалов и управляются такими механическими механизмами, как насосы, зубцы, клапаны и клинья, которые, в свою очередь, подвержены воздействию сил, обусловливающих движение неживой материи. Декарт исключил понятие человеческого разума из своей механистической модели тела, оставляя его концепциям бессмертной души. Однако философия Декарта может по праву считаться первой успешной попыткой предложить научное обоснование жизни, опираясь на физические законы, которые управляют неживыми объектами.
Механистический биологический подход продолжил разрабатывать предшественник сэра Исаака Ньютона. Английский медик Уильям Гарвей открыл, что сердце — не что иное, как механический насос. Столетие спустя французский химик Антуан Лавуазье во время одного из опытов обнаружил, что в процессе дыхания морские свинки потребляют кислород и выдыхают углекислый газ — подобный «обмен» происходит при сгорании. Это открытие послужило движущей силой в разработке новой удивительной технологии — паровых двигателей. Лавуазье пришел к заключению о том, что «дыхание — это, по сути, медленное сгорание, похожее на сгорание древесного угля». Как, возможно, предвидел еще Декарт, животные не так уж сильно отличались от паровозов, работающих на угольном топливе, которые стали символом промышленной революции, прокатившейся по всей Европе.
Но могут ли силы, приводящие в движение поезда, быть движущими силами жизни? Чтобы ответить на этот вопрос, мы должны разобраться в том, как поезда забираются на крутые холмы.
Молекулярный бильярдный стол
Раздел физики, изучающий взаимодействие теплоты и материи, называется термодинамикой. Важнейшим поворотным пунктом развития термодинамики стала смелая идея австрийского физика Людвига Больцмана о сходстве поведения частиц материи с хаотичным столкновением большого количества бильярдных шаров, которые в своем движении подчиняются законам ньютоновской механики.
Представьте себе бильярдный стол[11], разделенный на две части подвижной планкой. Все шары, включая биток, находятся слева от планки. Игровые шары образуют аккуратный треугольник — пирамиду. Теперь представьте себе раскат шаров: биток сильным ударом разбивает пирамиду и шары стремительно разлетаются во всех направлениях, сталкиваясь друг с другом и отскакивая от твердых бортов стола и от подвижной планки. Подумайте, что происходит с планкой: на нее воздействуют силы многих столкновений с левой стороны, где находятся все шары, а с правой — пустой — стороны стола воздействие силы ударов отсутствует. Несмотря на то что шары движутся абсолютно хаотично, планка под воздействием силы этих хаотичных столкновений будет сдвигаться вправо, расширяя игровую зону стола слева и сокращая пустую правую сторону. А теперь представьте, что, соорудив на бильярдном столе устройство из рычажков и воротов, мы могли бы управлять движением планки в правую сторону и перенаправить его так, что движущая сила толкала бы, скажем, игрушечный поезд вверх по игрушечному холму.
Больцман догадался, что подобным образом тепловые двигатели толкают настоящие паровые локомотивы — напомним, ученый жил в эпоху пара — вверх по настоящим склонам холмов. Молекулы воды внутри цилиндра паровой машины напоминают бильярдные шары, разлетевшиеся по столу после удара битком: их хаотичное движение ускоряется теплотой печи, молекулы сталкиваются друг с другом и с поршнем еще сильнее, заставляя поршень приводить в движение многочисленные валы, шестерни, цепи и колеса паровоза, направляя его вперед. Со времени открытия Больцмана прошло более 100 лет, но и сегодня ваш собственный автомобиль, работающий на бензине, приводится в действие точно таким же механизмом. Разница лишь в том, что пар заменили продукты сгорания топлива.
Примечательным аспектом термодинамики является тот факт, что вся эта наука сводится лишь к одной идее, изложенной выше. Упорядоченное движение, порождаемое любым тепловым двигателем, когда-либо построенным, возможно благодаря управлению хаотичным движением миллиардов атомов и молекул. В то же время законы термодинамики носят общий характер. Они применимы не только к созданию тепловых двигателей, но и к широкому кругу химических процессов и действуют каждый раз, когда горит уголь, ржавеет железный гвоздь, готовится пища, производится сталь, соль растворяется в воде, закипает чайник или ракета отправляется на Луну. Все эти химические процессы сопровождаются теплообменом и на молекулярном уровне подчиняются законам термодинамики, основанным на принципах хаотичного движения. К слову, почти все небиологические (то есть физические и химические) процессы, обусловливающие значимые перемены в нашем мире, управляются законами термодинамики. Морские течения, сильнейшие штормы, выветривание скал, лесные пожары, окисление металлов — все эти процессы протекают под воздействием неудержимых сил хаоса, которые изучает термодинамика. Каким бы структурированным и упорядоченным ни казался нам какой-либо сложный процесс, в его основе всегда лежит хаотичное движение молекул.
Жизнь как хаос?
Приложимы ли эти принципы к живой материи? Вернемся к нашему воображаемому бильярдному столу, к самому началу партии, когда шары уложены аккуратным треугольником. На этот раз мы добавим к исходным много новых шаров (давайте представим, что перед нами очень большой стол) и сделаем так, чтобы они сильными ударами бились о пирамиду. И снова хаотичные столкновения шаров с разделительной планкой приведут ее в движение, но вместо того, чтобы использовать это движение для запуска паровозика вверх по холму, мы соорудим более сложное устройство. На этот раз наш механизм, приводимый в действие хаотичными столкновениями многочисленных шаров, совершит нечто необычное: среди хаоса движущихся шаров он будет сохранять первоначальные шары в упорядоченной форме. Каждый раз, когда один из шаров пирамиды выбивается со своего места ударом одного из хаотично движущихся шаров, некий удивительный датчик обнаруживает нарушение порядка. Этот датчик словно направляет незримую механическую руку заменить недостающий шар в пирамиде (например, в одной из ее вершин) на точно такой же из тех, что, сталкиваясь, катаются по столу.
Надеемся, этим примером нам удалось показать вам, что система использует некоторое количество энергии хаотичных столкновений молекул, чтобы поддерживать один из своих участков в упорядоченном состоянии. В термодинамике для описания мер неупорядоченности системы используется термин «энтропия». Соответственно, о высокоупорядоченном состоянии системы говорят как о состоянии с низкой энтропией. О системе нашего бильярдного стола можно сказать, что она пользуется энергией высокоэнтропийных (хаотичных) столкновений для поддержания одной из своих частей, пирамиды шаров, в упорядоченном состоянии с низкой энтропией.
Не думайте о том, каким образом можно соорудить подобную замысловатую конструкцию. Главное, что на нашем столе (в системе, в которой наблюдаются состояния с разной энтропией) происходит нечто весьма интересное. Имея в распоряжении лишь силу хаотично движущихся шаров, новая система, объединяющая шары, стол, планку, датчик, фиксирующий движение шаров, и незримую руку, перенаправляющую движение, способна поддерживать порядок в собственной подсистеме.
Давайте усложним задачу для нашего воображения и представим более сложную картину: на этот раз некоторое количество энергии движущейся планки (назовем ее свободной энергией[12] системы) будет использоваться для создания и поддержания работы сенсорного устройства и подвижной незримой руки. В первую очередь энергия будет направлена на то, чтобы использовать огромное количество бильярдных шаров в качестве строительного материала для построения подобных устройств. Теперь вся система становится самодостаточной и в принципе способна поддерживать сама себя до тех пор, пока в нее регулярно будут попадать новые хаотично движущиеся шары и для планки будет достаточно места, чтобы двигаться.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.