Александр Уголев - Естественные технологии биологических систем Страница 9
- Категория: Научные и научно-популярные книги / Биология
- Автор: Александр Уголев
- Год выпуска: -
- ISBN: нет данных
- Издательство: -
- Страниц: 67
- Добавлено: 2019-02-05 15:32:28
Александр Уголев - Естественные технологии биологических систем краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Александр Уголев - Естественные технологии биологических систем» бесплатно полную версию:Книга посвящена концепции естественных технологий живых систем на различных уровнях организации последних и изложению доказательств, позволяющих преодолеть противопоставление естествознания и технологии. Эта концепция обосновывается на примере наиболее важных процессов в живых системах, их эволюции и происхождения. Охарактеризованы некоторые закономерности, которые могут быть интерпретированы как общие для естественных технологий живой природы и производственных технологий. Показано, что такие подходы плодотворны для понимания биологии в целом, процессов, протекающих в живых системах различной сложности, взаимодействий естественных и производственных технологий, в частности в медицине, экологии, питании и т.д.
Александр Уголев - Естественные технологии биологических систем читать онлайн бесплатно
Несколько лет назад нами впервые препаративно отделен апикальный гликокаликс от плазматической мембраны кишечных клеток крыс без повреждения этой мембраны (рис. 6, 7). Было обнаружено, что в апикальном гликокаликсе, отделяющем мембрану от внеклеточной среды, сосредоточено около 60% панкреатической амилазы, более 80% трипсина и около 20% химотрипсина, адсорбированных на структурах кишечной слизистой оболочки. Следовательно, примерно 40% амилазы, 20% трипсина и 80% химотрипсина, адсорбированных на этой оболочке, могут быть локализованы в латеральном гликокаликсе, т.е. в межмикрозорсинчатом пространстве, а также, возможно, частично на липопротеиновой мембране. В этих же экспериментах продемонстрировано, что такие собственно кишечные ферменты, как сахараза, гамма-амилаза, ди- и трипептидазы, связаны преимущественно с липопротеиновой мембраной. Однако щелочная фосфатаза, рассматриваемая как трансмембранный интегральный фермент, присутствует в довольно значительных количествах (до 20%) в апикальном гликокаликсе. (Сходные данные получены па курах). Кроме того, выявлено, что в апикальном гликокаликсе содержится 3.6% лейцинариламидазы, менее 2% пролилглициндипептидазы и менее 1% глицилпролинди-пептидазы.
Благодаря локализации кишечных ферментов на липопротеиновой мембране в непосредственной близости от транспортных систем мембранное пищеварение обеспечивает сопряжение конечных этапов переваривания и начальных этапов всасывания. Это достигается в результате специальной организации пищеварительных и транспортных функций клеточной мембраны в виде своеобразного пищеварительно-транспортного конвейера, способствующего передаче конечных продуктов гидролиза с фермента на вход в транспортную систему и предотвращению конкуренции между ними за обладание входом в последнюю (рис. 8). Иными словами, мембранный фермент и транспортная система образуют олигомерный комплекс, между частями которого существуют кооперативные и аллостерические взаимодействия (рис. 9, 10).
Мембранное пищеварение наблюдается у организмов на всех уровнях эволюционного развития, т.е. является универсальным механизмом. Оно обнаружено у всех млекопитающих, включая человека, у птиц, рыб, амфибий, круглоротых, а также у беспозвоночных животных, в том числе у насекомых, ракообразных, моллюсков, у различных паразитирующих форм. Существуют данные о наличии мембранного пищеварения у дрожжей, бактерий и в корнях растений.
Для правильной оценки мембранного пищеварения существенны следующие факторы.
1. Ферменты, реализующие этот процесс, относятся к структурированным. В связи с этим возможна пространственная организация как ферментных, так и транспортных систем, объединяющих заключительные этапы переваривания и начальные этапы всасывания.
2. Структурирование ферментов приводит к изменению их свойств. Так, отделение ферментов от мембраны меняет их каталитические и регуляторные характеристики.
3. Зона мембранного пищеварения обладает особыми физико-химическими свойствами, в частности такими как pH, концентрация органических и неорганических ионов, неперемешиваемый слой жидкости.
4. Мембранное пищеварение осуществляется в стерильной зоне, недоступной для бактерий, что предотвращает поглощение последними легко усвояемых низкомолекулярных пищевых веществ.
5. Благодаря ферментному аппарату гликокаликсный слой превращается в высокоспецифический фильтр. Через этот слой проникают те вещества, для которых на поверхности и внутри гликокаликсного пространства имеются адекватные ферменты, но не проникают другие вещества с такими же размерами молекул.
6. Для понимания эффективности мембранного пищеварения и трансмембранной проницаемости важны сведения о сократительной функции щеточной каймы, регулируемой кальцием. Показано, что микрофиламенты микроворсинок, выполняющие эти функции, содержат актин и миозин и связаны с апикальной мембраной кишечных клеток.
7. Следует учитывать не только процессы синтеза кишечных ферментов и их включения в состав апикальной мембраны кишечных клеток, по и скорость их деградации. (Более подробно см. гл. 5).
Рис 9. Схема последовательных конформационных взаимодействий и транспортной частей комплекса.
1 - субстрат; 2 - продукт; 3 - трансмембранный фермент; транспортная система; 5 - мембрана
2.4. Схема переваривания пищи как сочетание трех основных типов пищеварения
После обнаружения мембранного пищеварения классическая схема ассимиляции пищи претерпела существенные изменения. Согласно классическим представлениям, пищевые вещества — нутриенты, способные к всасыванию и ассимиляции, освобождаются в результате ферментативного гидролиза сложных органических соединений за счет внеклеточного (полостного) и внутриклеточного типов пищеварения. При этом усвоение пищевых веществ происходит в два этапа: полостное пищеварение—всасывание. Согласно современной схеме, усвоение пищи реализуется не в два, а в три этапа: полостное пищеварение—мембранное пищеварение—всасывание с более или менее выраженным компонентом внутриклеточного пищеварения. Таким образом, мембранное пищеварение, занимая по функциональной позиции промежуточное положение между полостным пищеварением и всасыванием, является акцепторным механизмом по отношению к полостному гидролизу и донорным по отношению к всасыванию. Следовательно, полостное пищеварение без мембранного не имеет существенного значения, так как всасывание без предварительного мембранного гидролиза невозможно из-за отсутствия адекватных субстратов. Вместе с тем нельзя недооценивать роль полостного пищеварения, так как обычные пищевые продукты не способны проникать в зону щеточной каймы и гликокаликсное пространство без обработки в пищеварительных полостях.
В реальных условиях имеет место сочетание двух или трех механизмов пищеварения (вне-, внутриклеточного и мембранного) у одного и того же организма. Возможно, благодаря этому достигается особенно высокая эффективность и экономичность работы пищеварительного аппарата.
Для высших животных и человека наиболее характерным является сочетание полостного и мембранного пищеварения (рис. 11). Начальные стадии гидролиза реализуются с помощью секретируемых в полость тонкой кишки преимущественно панкреатических ферментов. Здесь происходит разрушение клеточных структур пищевых продуктов и гидролиз некоторой части химических связей в молекулах биополимеров. Сравнительно мелкие молекулы проникают в зону щеточной каймы, где под влиянием адсорбированных и собственно кишечных мембранных ферментов гидролиз завершается и осуществляется переход к всасыванию. Важно, что за счет мембранного пищеварения расщепляется около 80—90% химических связей.
Рис. 10. Упрощенная схема аллостерических взаимодействий ферментной и транспортной частей комплекса,
А — аллостерические влияния фермента на вход в транспортную систему; Б — аллостерические влияния транспортной системы на активность фермента. 1 — субстрат; 2 — продукт; 3 — фермент; 4 - транспортная система; 5 — мембрана.
Большинство надмолекулярных агрегаций и крупных молекул (белки и продукты их неполного гидролиза, углеводы, жиры) у млекопитающих расщепляются в полости тонкой кишки в нейтральной или слабощелочной средах преимущественно под влиянием ферментов (эндогидролаз), секретируемых клетками поджелудочной железы. Пептиды, образовавшиеся в кислой среде желудка под влиянием кислых протеаз, и нерасщепленные белки гидролизуются трипсином, химотрипсином, карбоксипептидазами А и В и эластазон. В результате последовательного действия этих ферментов в полости тонкой кишки из крупных белковых молекул образуются ннзкомолекулярные пептиды и незначительное количество аминокислот. Углеводы (полисахариды крахмал и гликоген) расщепляются амилазой поджелудочного сока до три- и дисахаридов без значительного накопления глюкозы. Жиры подвергаются гидролизу в полости тонкой кишки панкреатической липазой, которая поэтапно отщепляет жирные кислоты, что приводит к образованию ди- и моноглицеридов, свободных жирных кислот и глицерина. В гидролизе жиров существенную роль играет желчь.
Рис. 11. Схема взаимодействий полостного и мембранного пищеварения.
А — последовательная деполимеризация пищевых субстратов в полости и на поверхности тонкой кишки; Б — фрагмент липопротеиновой мембраны с адсорбированными и собственно кишечными ферментами. М — мембрана; МБ — микроворсинки; Га — апикальный гликокаликс; Гл — латеральный гликокаликс; С1—С2 — субстраты; Фп — панкреатические ферменты; Фм — мембранные ферменты; Т транспортная система; Р — регуляторные центры ферментов; К — каталитические центры ферментов; НЭ — неэпзиматические факторы.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.