Новые законы робототехники. Апология человеческих знаний в эпоху искусственного интеллекта - Фрэнк Паскуале Страница 22

Тут можно читать бесплатно Новые законы робототехники. Апология человеческих знаний в эпоху искусственного интеллекта - Фрэнк Паскуале. Жанр: Научные и научно-популярные книги / Деловая литература. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Новые законы робототехники. Апология человеческих знаний в эпоху искусственного интеллекта - Фрэнк Паскуале

Новые законы робототехники. Апология человеческих знаний в эпоху искусственного интеллекта - Фрэнк Паскуале краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Новые законы робототехники. Апология человеческих знаний в эпоху искусственного интеллекта - Фрэнк Паскуале» бесплатно полную версию:

Появившиеся в последнее время в избытке консультанты по менеджменту так рисуют перспективы труда в будущем: если машина может делать то же, что и вы, значит, ваш труд будет автоматизирован. Они убеждают бизнесменов и политиков, что все специалисты, от врачей до солдат, окажутся не нужны, поскольку на их место придет постоянно развивающийся искусственный интеллект. А потому предлагается целесообразная, по их мнению, альтернатива: делайте роботов, или они заменят вас.
Но возможна и другая ситуация. Практически во всех сферах жизни роботизированные системы могут повысить, а не понизить ценность труда. Фрэнк Паскуале рассказывает, как медсестры, учителя, дизайнеры и другие специалисты могут сотрудничать с теми, кто развивает технологии, а не служить им источником данных для компьютерных устройств, которые должны их заменить. Такое сотрудничество показывает нам то технологическое развитие, которое способно дать человеческому обществу более качественное здравоохранение, образование и многое другое, сохранив при этом осмысленный труд. Подобное партнерство демонстрирует также, что право и регулирование могут стимулировать всеобщее процветание, а не игру с нулевой суммой, в которой люди были бы вынуждены состязаться с машинами.
В какой мере задачи, ранее выполнявшиеся людьми, стоит доверить искусственному интеллекту? Что при этом выигрывается и что теряется? Что представляет собой оптимальное сочетание человеческих и роботизированных взаимодействий? В «Новых законах робототехники» доказывается, что политики и чиновники не должны позволять корпорациям или инженерам отвечать на эти вопросы в одиночку. То, как будет происходить автоматизация, и то, кому она принесет выгоду, зависит от тысяч малых решений, определяющих путь развития искусственного интеллекта. Паскуале предлагает способы демократизации процесса принятия решений, противостоящей его централизации в фирмах, которые ни перед кем не отчитываются. Книга предлагает оптимистичный путь формирования технологического прогресса, при котором человеческие способности и экспертные знания становятся незаменимым центром инклюзивной экономики.
В формате PDF A4 сохранен издательский макет книги.

Новые законы робототехники. Апология человеческих знаний в эпоху искусственного интеллекта - Фрэнк Паскуале читать онлайн бесплатно

Новые законы робототехники. Апология человеческих знаний в эпоху искусственного интеллекта - Фрэнк Паскуале - читать книгу онлайн бесплатно, автор Фрэнк Паскуале

самой позиции ассистентов преподавателей компьютерных наук или даже самих преподавателей? Гоэл считает, что дело обстоит прямо противоположным образом. Когда на простые вопросы отвечает бот, у ассистентов есть возможность отвечать на более сложные. Фокусируя технологию на рутинных вопросах, Гоэл и его команда ориентируются на гуманистическое ближайшее будущее, в котором программы будут в основном помогать уже имеющимся преподавателям[186].

С другой стороны, каковы бы ни были намерения специалистов по компьютерным наукам, сильные политические и экономические мотивы заставляют такие инновации, как JW, развиваться в другом направлении, в сторону замены учителей и постоянного мониторинга студентов. Джорджия стала одним из многих штатов, в которых после экономического спада сократили финансирование государственного образования. Кризис, вызванный пандемией COVID-19, заставил университеты еще больше сократить расходы и увеличить долю преподавания онлайн. Сильные игроки в образовательной политике, начиная с глобальных фондов и заканчивая верхними эшелонами бюрократии в Вашингтоне или Брюсселе, также ставят перед собой задачу сокращения расходов. Вместо того чтобы поднять налоги для расширения уже существующих университетов, в Калифорнии в 2016 г. была внедрена плохо продуманная система сетевых курсов, которые должны были компенсировать нехватку курсов в колледжах[187]. ИИ (который занят обучением) и роботы (занятые мониторингом тестов) – вероятный следующий шаг, особенно если учесть то, что на таких курсах нужен мониторинг студентов, чтобы они не жульничали и не отвлекались.

В США передовые технологии наблюдения уже задействованы в отслеживании движения глаз и пальцев студентов на сетевых занятиях и сетевом тестировании. В Университете Содружества Виргинии студентов поощряли использовать сканы сетчатки вместо кредитных карт и для оплаты еды в столовой. По мере роста накопленных данных предприниматели надеются начать отслеживать движение студентов и многое другое, чтобы еще лучше соотносить определенные паттерны жизни с желаемыми результатами. Другими словами, машина непрестанного наблюдения, разработанная компанией Hikvision, – это не странное отклонение, представляющее «технологию ябедничества». Скорее она, возможно, предрекает будущее образования в эпоху все более конформистского ИИ.

Грубо говоря, нам надо решить, чего именно мы хотим: инвестировать в образовательный ИИ, который постоянно измеряет и оценивает учащихся, или сосредоточить наши усилия на продуктах, повышающих уровень образования, создавая креативную и способствующую обучению среду. Проблемой, которую следует действительно решать, является ограниченность способности учителя отвечать на вопросы и давать советы; но его небезграничная способность наблюдать и оценивать каждый момент жизни учащегося является, скорее, благословением, ценным аспектом человеческого образования, который необходимо сохранить и в более технологичном будущем. К сожалению, менедже-риальный подход колонизировал значительную часть технообразования, что привело к выпячиванию количественных измерений. Цели образования разнообразны: многие из них нельзя, да и не нужно сводить к количественным оценкам. Если мы позволим ИИ перевести наше внимание с актуального обучения на то, что компьютеры умеют лучше всего измерять и оптимизировать, то упустим крайне важную возможность. Хуже того, мы позволим технологии узурпировать наши ценности и в конечном счете диктовать их, вместо того чтобы служить нам инструментом, помогающим их достигать. В этой главе исследуются позитивные применения ИИ и роботов в образовании, причем упор делается на то, как легко они могут скатиться к жестоким формам социального контроля.

Разнообразие целей образования

Траектория развития образовательной робототехники будет определяться проблемами, которые мы пытаемся решить. Роботы и ИИ – это инструменты, а не самодостаточные цели. Как отметил исследователь Нейл Селвин, споры об объеме и интенсивности автоматизации классов обычно являются «удобным заместителем более пространных дискуссий о природе, форме и функции образования в XXI в.»[188]. Действительно, целями образования могут быть все пункты следующего списка, однако разработчики в области технообразования не преследуют все их в равной степени:

1. Обучение вербальным и математическим/логическим/количественным навыкам и фундаментальные познания в истории, социологии, искусстве, науке и других областях.

2. Подготовка к специальности или карьере путем тренировки навыков или к профессии путем приобретения фундаментальных знаний и критического суждения.

3. Конкуренция за лучшие возможности в обучении и найме.

4. Обучение социальным навыкам и эмоциональному интеллекту.

5. Подготовка к гражданской роли, в том числе к участию в гражданском обществе[189].

Но, с точки зрения менеджеров-технократов, как только цели заданы, следующий шаг – это измерить их достижение путем количественного тестирования или какой-либо иной оценки результатов. Рассмотрим второй тип целей, а именно подготовку к трудовой деятельности. Социологи могут провести всевозможные исследования, в которых определят, какие учебные заведения лучше всего готовят учащихся к работе или поступлению в колледж. Возможность найма и заработки можно измерить, также существуют грубые оценки удовлетворенности работой. В результате появились различные рейтинги колледжей, основанные на определенном комплексе факторов. В некоторых указывались колледжи, не отличающиеся высоким качеством образования. В более серьезных программах изучаются публикации и исследовательские профили членов преподавательского состава. Экономические оценки строятся на соотношении стоимости обучения для студентов и их будущих заработках[190]. Их базовая логика безошибочна: студентам необходимо выбрать программы, которые коррелируют с максимальным приростом потенциального заработка, дисконтируемым по стоимости такого образования.

Этот строго инструментальный взгляд отличается прямолинейностью, а потому в экономическом смысле он весьма привлекателен, особенно если вы рассматриваете рабочую силу в качестве товара, аналогичного соевым бобам или углю, то есть в качестве фактора производства, который в идеальном случае постепенно дешевеет. Так же как прогресс в горном деле может привести к удешевлению угля, технообразование, получается, способно заменить дорогостоящих учителей и преподавателей, чтобы рабочую силу было дешевле готовить, а потому и нанимать. Конечно, сторонники количественных измерений изображают свои намерения в несколько ином свете, заявляя, что они учат студентов тем навыкам, которые действительно нужны им для преуспевания[191]. Однако, когда успех определяется довольно узко – как доход и возможность найма, фокусировка на результатах ведет к радикально иным методам преподавания, начиная с виртуальных кибершкол и заканчивая лекциями на YouTube. Сторонники технологий рассуждают, что, если мы можем договориться о правильных вопросах тестов (для начального и среднего образования), а также о количественных показателях успешности выпускников вузов (для высшего образования), подойдет любой новый метод обучения, если студенты, которые учатся по нему, показывают такие же или даже лучшие результаты, чем аналогичные студенты, обучаемые людьми.

Методы искусственного интеллекта вполне соответствуют неолиберальной идее «учиться ради заработка», поскольку машинное обучение лучше всего умеет оптимизировать определенные количественные величины (такие как доход), основываясь на манипуляции тысячами других переменных. Однако подобная фокусировка на количественных измерениях не работает в области более мягких, то есть контекстуальных навыков, привычек, ценностей и установок. Как составить лучший тест социальных навыков? Где найти многовариантный тест хорошего гражданина, демократического участия или политической мудрости? В определенной мере традиционные методы обучения

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.