Лев Власов - Занимательно о химии Страница 13

Тут можно читать бесплатно Лев Власов - Занимательно о химии. Жанр: Научные и научно-популярные книги / Химия, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Лев Власов - Занимательно о химии

Лев Власов - Занимательно о химии краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Лев Власов - Занимательно о химии» бесплатно полную версию:

Авторы этой книги попытались рассказать о наиболее важных и интересных химических проблемах.

Читатель из этой книги узнает, как устроена периодическая система и почему она так называется; как получают сложнейшие вещества и как работают с единичными атомами химических элементов.

Лев Власов - Занимательно о химии читать онлайн бесплатно

Лев Власов - Занимательно о химии - читать книгу онлайн бесплатно, автор Лев Власов

Подобно тому, как в обычной химии одно и то же соединение можно получить разными способами, так и в ядерной химии один и тот же элемент удается искусственно приготовить с помощью различных ядерных реакций.

Тот же технеций люди научились создавать в количествах, измеряемых килограммами, на самой удивительной в мире фабрике. Эта фабрика — ядерный реактор. Здесь вырабатывается энергия деления урановых ядер под действием медленных нейтронов.

Ядра урана распадаются на разнообразные осколки, каждое на два. Осколки — ядра атомов элементов середины таблицы Менделеева. Уран, делясь, порождает элементы, которые обитают более чем в 30 клетках периодической системы — от 30 номера до 64. В том числе и технеций. И еще один странный элемент, тщетные поиски которого в земной коре длились десятилетиями. Прометий, обитатель 61-й клетки.

Ядерная химия предоставила в распоряжение ученых элементы тяжелее урана. При делении урановых ядер, кроме осколков, вылетает много нейтронов. Они могут поглотиться неразделившимися ядрами. Так возникает возможность синтеза элементов с порядковыми номерами 93, 94 и далее, трансурановых элементов.

Много способов получения таких элементов знает ядерная химия. Ныне трансурановых элементов известно 12: нептуний, плутоний, америций, кюрий, берклий, калифорний, эйнштейний, фермий, менделеевий и лоуренсий. И курчатовий — самый тяжелый трансурановый элемент, недавно (в 1964 году) синтезированный группой советских физиков во главе с Г. Н. Флеровым. Название одному из трансуранов, с порядковым номером 102, пока не дано.

Представьте себе удивление каменщика, который сегодня возвел каменную кладку нового этажа дома, а завтра обнаружил, что вся его работа исчезла. Именно в таком положении находятся исследователи, изучающие химические свойства тяжелых трансуранов. Эти элементы крайне неустойчивы, время их жизни измеряется минутами и даже секундами. Работая с обычными элементами, химик нисколько не стеснен рамками времени. Когда же в его руки попадают короткоживущие представители таблицы Менделеева, в особенности тяжелые трансураны, каждая минута исследования начинает цениться на вес золота. Мало того что изучаемые объекты вот-вот исчезнут. Их в распоряжении химика мизерные количества, иногда буквально считанные атомы.

А потому необходимы специальные методы работы. Ими ведает новая молодая ветвь химии — радиохимия, химия радиоактивных элементов.

Смерть и бессмертие в мире элементов

Пришло время, когда химики сделались своеобразными археологами. Они научились измерять возраст различных минералов земной коры, подобно тому как археолог определяет, сколько веков назад изготовлено какое-нибудь бронзовое украшение или глиняный сосуд.

Оказалось, что возраст иных минералов превышает четыре с половиной миллиарда лет. Они так же стары, как и сама планета Земля. Но ведь минералы — это химические соединения. Они состоят из элементов. Стало быть, элементы практически бессмертны…

Не кажется ли вам нелепой сама постановка вопроса: может ли элемент умереть? Ведь смерть — это печальный удел живых существ…

Нет, этот вопрос не бессмыслен, как может показаться на первый взгляд.

Есть такое физическое явление: радиоактивность. Оно состоит в том, что элементы (а точнее, ядра их атомов) могут самопроизвольно разрушаться. Одни ядра исторгают из своих недр электроны. Другие — испускают так называемые альфа-частицы (ядра гелия). Третьи — разваливаются на две примерно равные половинки: этот процесс именуют спонтанным делением.

Все ли элементы радиоактивны? Нет, не все. Главным образом те, что стоят в конце периодической системы, начиная с полония.

Распадаясь, радиоактивный элемент не исчезает вовсе. Он превращается в другой. Эти цепочки радиоактивных превращений могут быть очень длинными.

Например, из тория и урана в конце концов образуется устойчивый свинец. А на этом пути рождается и погибает добрый десяток радиоактивных элементов.

Радиоактивные элементы живучи в разной степени. Одни, прежде чем исчезнуть полностью, существуют десятки миллиардов лет. Жизнь других настолько коротка, что измеряется минутами и даже секундами. Ученые оценивают живучесть радиоактивных элементов с помощью специальной величины: периода полураспада. В этот промежуток времени взятое количество радиоактивного элемента распадается ровно наполовину.

Периоды полураспада урана и тория равны нескольким миллиардам лет.

Совсем иначе обстоит дело с их предшественниками по таблице Менделеева — протактинием, актинием, радием и францием, радоном, астатом и полонием. Их жизнь куда короче: во всяком случае, не больше 100 тысяч лет. А раз так, то возникает неожиданное недоразумение.

Почему, собственно, эти короткоживущие элементы существуют на Земле? Ведь нашей планете что-то около 5 миллиардов лет… За этот трудно вообразимый срок должны были сотни раз исчезнуть и радий и актиний и иже с ними.

Однако живут. И прячутся в земных минералах испокон веку… Словно природа имеет в своем распоряжении «живую» воду, не дающую им погибать.

Дело в другом: просто-напросто они непрерывно рождаются вновь, потому что их питает вечный источник. Земные запасы урана и тория. Ведь пока эти «патриархи» среди радиоактивных элементов совершают долгий и сложный путь превращений в устойчивый свинец, они походя превращаются в промежуточные элементы. И получается, что среди химических элементов мы можем выделить две большие группы — первичных и вторичных.

К первичным относятся все нерадиоактивные элементы и уран с торием, у которых периоды полураспада превышают возраст Земли. Они были свидетелями образования солнечной системы.

Остальные — вторичные.

И все-таки наступит момент, когда периодическая система недосчитается нескольких элементов. Уран и торий — вечный источник вторичных элементов. Однако относительно вечный. Когда-то с лика Земли исчезнут и они. Исчезнут полностью эдак через сотню миллиардов лет. А вместе с ними уйдут в небытие и продукты их радиоактивных превращений.

Один, два, много…

Примерно такими были счетные способности первобытного человека. Его математический аппарат насчитывал всего две количественные величины — «много — мало».

Почти таким же критерием пользовались люди лет сто назад, когда пытались оценивать, сколько каких элементов припасено нашей планетой в ее «закромах».

Широко используются в практике, скажем, свинец, цинк, серебро, стало быть, их много. Значит, это элементы распространенные. А редкие земли (лантаноиды) потому и редкие, что на Земле почти не встречаются. Их мало.

Вот как легко было рассуждать какое-то столетие назад.

Право же, первые ревизоры кладовых химических элементов занимались работой не очень обременительной. Вспоминая об их «деятельности», наши современники весело улыбаются.

Да и как же не улыбнуться, если теперь они точно могут ответить на вопрос: сколько чего? Если они даже могут сказать, сколько атомов каждого элемента содержится в земной коре. Они наверняка знают, что пресловутых редких земель в минералах планеты лишь немногим меньше, чем свинца, цинка и серебра, вместе взятых.

Скрупулезная «бухгалтерия» запасов химических элементов началась с научного подвига. Его совершил американский ученый Фрэнк Кларк. Он проделал более пяти с половиной тысяч химических анализов. Самых различных минералов — из тропиков и из тундры. Самых разнообразных вод — из глухого таежного озера и Тихого океана. Исследовал образцы всевозможных почв с разных концов света.

Двадцать лет продолжался этот титанический труд. Благодаря Кларку и другим ученым человечество получило вполне четкое представление, каких элементов на Земле больше всего.

Так родилась наука геохимия. Она поведала людям такие удивительные истории, какие раньше не могли и присниться.

Вот что оказалось: первые 26 представителей менделеевской таблицы — от водорода до железа — практически образуют всю земную кору. Они составляют 99,7 процента от ее веса. Только «жалких» три десятых процента приходится на долю остальных 67 элементов, встречающихся в природе.

Чего же больше всего на Земле?

Не железа, не меди, не олова, хотя человек пользовался ими тысячелетиями и запасы этих металлов представлялись огромными, неисчерпаемыми. Больше всего — кислорода. Если на одну чашу воображаемых весов положить земные ресурсы кислорода, а на другую — всех прочих элементов, чаши почти уравновесятся. Почти наполовину земная кора состоит из кислорода. Где его только нет: в водах, в атмосфере, в огромном количестве горных пород, в любом животном и растении — всюду кислород играет весьма видную роль.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.