Джессика Сакс - Микробы хорошие и плохие. Наше здоровье и выживание в мире бактерий. Страница 40
- Категория: Научные и научно-популярные книги / Химия
- Автор: Джессика Сакс
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 71
- Добавлено: 2019-11-15 11:43:12
Джессика Сакс - Микробы хорошие и плохие. Наше здоровье и выживание в мире бактерий. краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Джессика Сакс - Микробы хорошие и плохие. Наше здоровье и выживание в мире бактерий.» бесплатно полную версию:Джессика Сакс - Микробы хорошие и плохие. Наше здоровье и выживание в мире бактерий. читать онлайн бесплатно
Другое, потребовавшее еще больших усилий открытие ее лаборатории состояло в обнаружении генетических свидетельств того, что грамотрицательные бактерии из рода Bacteroides исходно подхватили некоторые из этих генов устойчивости с противоположной стороны царства бактерий — у таких грамположительных организмов, как образующий споры кишечный микроб Clostridium perfringens и палочковидная почвенная бактерия Bacillus sphaericus. Подобная передача генов — от жестких и тяжеловооруженных грамположительных клеток к Bacteroides thetaiotaomicron с их скользкой капсулой — долгое время считалась маловероятной, если вообще возможной. “Это как если бы броненосец спаривался с кальмаром”, — говорит Абигайль Сэльерс. Или, если точнее отразить степень эволюционного родства, как если бы броненосец скрещивался с секвойей.
Абигайль Сэльерс знает, что антибиотик в пробирке у ее аспирантки не только не сможет убить бактерий, плавающих внутри, но и будет способствовать передаче ДНК между ними. “Если представить себе передачу генов между бактериями как бактериальный аналог случайных связей между незнакомыми людьми, то антибиотики играют здесь роль афродизиака, — говорит она. — Тетрациклин может их как следует завести”. Такая рекация, возможно, связана с одним из многих методов совместного выживания, широко распространенных в мире бактерий. Принцип здесь, по словам исследовательницы, может быть такой: “Я поделюсь с тобой своими генами, если ты поделишься со мной своими”.
Абигайль Сэльерс разделяет обеспокоенность Стюарта Ливи из Университета Тафтса по поводу того, что не только антибиотики, но и многие другие современные антибактериальные продукты могут способствовать распространению устойчивости к лекарственным препаратом за счет этих и других трюков, которыми владеют бактерии. “Ливи указывает на серьезные основания для беспокойства, — говорит она, — поскольку некоторые из этих продуктов могут способствовать отбору мутаций, делающих бактерий устойчивыми не только к самим этим продуктам, но и к некоторым другим антибиотикам”. Особенное беспокойство у Ливи вызывает триклозан — химикат, который особенно часто добавляют в антибактериальные мыла, зубные пасты, ополаскиватели для полости рта и бытовые чистящие средства. В 1998 году сотрудница его лаборатории Лора Макмёрри показала, что триклозан действует скорее как антибиотик, чем как убивающие все подряд вещества для дезинфекции, такие как спирт или гипохлорит натрия. А именно она показала, что триклозан отключает фермент, используемый бактериями для синтеза жиров, причем совсем небольшое изменение ДНК, то есть мутация, позволяет кишечной палочке и многим другим микроорганизмам обходить эту преграду.
Сотрудники лаборатории Ливи с тех пор также показали, что триклозан может запускать механизм, обеспечивающий устойчивость ко многим антибиотикам у кишечной палочки, сальмонелл, шигелл и других кишечных бактерий. Он делает это, заставляя сработать ключевой генетический переключатель — так называемый оперон устойчивости ко многим антибиотикам, или mar (multiple-antibiotic-resistance орегоп). Этот переключатель в свою очередь активирует целый набор из примерно шестидесяти различных генов, помогающих бактерии выжить, в том числе ген так называемого откачивающего насоса, который выводит из бактериальной клетки не только триклозан, но и ряд других антибиотиков. Аналогичный генетический “рвотный рефлекс” запускается, когда эти бактерии сталкиваются с дезинфицирующими средствами, такими как скипидар, или химическими консервантами, такими как хлорид бензалкония и другие четвертичные аммониевые соединения, широко используемые в глазных каплях, аэрозолях для носа и косметике. Следовательно, все эти хозяйственные товары могут способствовать выработке у бактерий устойчивости ко многим антибиотикам, отбирая тех мутантов, у которых трюмный насос для откачивания антибиотиков работает круглосуточно57. Проблему может усугубить то обстоятельство, что триклозан и его близкий химический родственник триклокарбан устойчиво сохраняются в очищенных стоках и за последние двадцать лет стали повсеместно встречаться в грунтовых и подземных водах, а также в пресноводных озерах и реках США.
Стюарт Ливи и Абигайль Сэльерс отнюдь не одиноки в своем стремлении донести до людей данные исследований, показывающие, что за период чуть больше чем пол- века массовое применение антибиотиков и других антибактериальных веществ преобразило экосистемы микробов обитающих внутри нас. Например, исследователи из лон' донского Стоматологического института Истмена недавно установили, что почти у всех младшеклассников в ротовой полости обитают бактерии, устойчивые к тетрациклину, несмотря на то что врачи вообще не прописывают тетрациклин детям младше двенадцати из-за того, что этот антибиотик портит цвет растущих зубов.
Вопрос, ответа на который подобные исследования дать не могут: откуда произошли все эти опасные гены. В редких случаях новая разновидность устойчивости к антибиотикам возникает в результате случайных мутаций. Если повезет, такая мутация оказывается в состоянии изменить биохимическую мишень антибиотика так, что ему больше не за что будет ухватиться в бактериальной клетке. Простая мутация может также подействовать на переключатель, заставляющий откачивающий насос работать сверхурочно. Но сам откачивающий насос представляет собой вполне работоспособный биохимический аппарат, генетический чертеж которого выработался в ходе эволюции за сотни миллионов лет. То же относится и к сложным генам бактериальных ферментов, таких как беталактамаза, которая расщепляет, блокирует или иным способом нейтрализует десятки важных антибиотиков. Ясно, что эти механизмы устойчивости не могли выработаться в ходе эволюции за последние шестьдесят с чем-то лет. Так же ясно, что до внедрения антибиотиков они встречались редко, если вообще встречались, у бактерий, заселяющих или заражающих человеческий организм. Но оказалось, что они всегда были не дальше от нас, чем грязь, которую мы топчем ногами.
Устойчивость хоть лопатой загребай
В распоряжении Джерри Райта, главы Противомикробного исследовательского центра Университета Макмастера в Гамильтоне (провинция Онтарио, Канада), имеется оборудованная по последнему слову техники лаборатория, в которой есть все, что может понадобиться разработчику новых медикаментов, включая стоящий 15 миллионов долларов США аппарат для высокоскоростного скрининга, позволяющий одновременно проверять эффективность действия десятков потенциальных медикаментов на сотни бактериальных мишеней. Однако Райт убедился, что технологии XXI века бледнеют перед лицом изящных механизмов создания антибиотиков, которые можно наблюдать в комке грязи.
“Лучшим умам синтетической химии потребовались годы неимоверных усилий на получение даже в малых количествах таких структурно сложных антибиотиков, как ванкомицин, — объясняет он. — Но многие разновидности бактерий могут делать это с легкостью”. Особый интерес у Райта и его команды из Противомикробного центра вызывают стрептомицеты (Streptomyces) — обширный род почвенных бактерий, давно привлекавших внимание ученых своей способностью образовывать сложные колонии из длинных нитевидных клеток с напоминающими плодоножки стебельками, несущими споры. На определенном этапе эти производящие антибиотики бактерии пополнили наш медицинский арсенал дюжиной с лишним новых классов препаратов, в том числе стрептомицинами, тетрациклинами, неомицинами, эритромицинами и ванкомицинами.
В подземном мире микробов эти биохимические соединения, судя по всему, играют две разные роли. Результаты ряда исследований указывают на то, что при низких концентрациях они работают как сигнальные молекулы позволяя бактериальным клеткам ощущать присутствие других клеток собственного и других видов и реагировать на него. При более высоких концентрациях они могут играть более знакомую нам роль антибиотиков как ядов, оттесняя конкурентов в бесконечной толкотне сложных микробных сообществ, повсеместно, от пустынь нашей планеты до горных вершин, пропитывающих песок и почву.
Райт начал исследования генов стрептомицетов в середине девяностых. Цель исследований состояла как раз в том, чтобы узнать у этих бактерий некоторые трюки, полезные для разработки лекарственных препаратов. Райт и его аспирант Кистофер Маршалл сосредоточились в особенности на одном отрезке хромосомы, принадлежащей бактерии Streptomyces toyocaensis, о котором было известно, что он задействован в синтезе тейкопланина — антибиотика, близкородственного ванкомицину. Результатом этого исследования стал каталог из нескольких десятков генов, в числе которых был и нежданный подарок судьбы — набор генов самосохранения, защищающих клетки S. toyocaensis от их собственного яда.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.