Галактики. Большой путеводитель по Вселенной - Джеймс Гич Страница 13

Тут можно читать бесплатно Галактики. Большой путеводитель по Вселенной - Джеймс Гич. Жанр: Научные и научно-популярные книги / Науки о космосе. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Галактики. Большой путеводитель по Вселенной - Джеймс Гич

Галактики. Большой путеводитель по Вселенной - Джеймс Гич краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Галактики. Большой путеводитель по Вселенной - Джеймс Гич» бесплатно полную версию:

Галактики – это своеобразные «кирпичики» в бескрайнем «здании» Вселенной. Возникшие из пыли Большого Взрыва, эти «кирпичики» не находятся в состоянии покоя вот уже 13 миллиардов лет – они продолжают изменяться.
Джеймс Гич рассказывает увлекательную историю эволюции самых красочных элементов космоса: как возникли галактики; почему их так много, они отличаются размерами, яркостью и формой; и как им удалось вырастить в своих недрах черные дыры. Как практикующий исследователь Гич приподнимает завесу тайны над работой астрофизика: они борются за финансирование, пишут заявки на доступ к телескопам в последний момент перед дедлайном ради азарта увидеть то, что еще не было доступно глазу человека. А самое главное Гич объясняет, почему современный астрофизик – охотник за светом, и каким образом можно увидеть далекое прошлое Вселенной.
В формате PDF A4 сохранен издательский макет книги.

Галактики. Большой путеводитель по Вселенной - Джеймс Гич читать онлайн бесплатно

Галактики. Большой путеводитель по Вселенной - Джеймс Гич - читать книгу онлайн бесплатно, автор Джеймс Гич

до криогенных температур – около градуса выше абсолютного нуля, – после чего уже проверяются все отдельные детекторы: каждый ли работает, все ли они одинаково реагируют на входящие фотоны, какие могут быть искажения. Кроме того, необходимо разработать новое программное обеспечение для управления камерой и обработки исходных данных, которые с нее поступают. Все эти подготовительные процессы требуют немало времени, но они крайне важны для успешного проведения научных экспериментов: чтобы корректно интерпретировать новые результаты, нам необходимо точно понимать, как работает прибор.

На субмиллиметровых длинах волн основная часть сигнала, который видит камера, на самом деле исходит от атмосферы Земли, и эта составляющая чрезвычайно изменчива. Сигнал с неба, равно как и случайные смещения, рост усиления и скачки данных, вызванные различными сбоями и другими происками злых сил, должен быть аккуратно выделен из общего массива. Поскольку устройства камеры SCUBA-2, которые считывают сигнал, также являются отличными магнитометрами, мы получаем на картах еще и некоторое остаточное «излучение», вызванное загрязнением от магнитного поля Земли. К счастью, мы можем удалить этот сигнал, используя некоторые хитрые методы обработки и экранируя чувствительный инструмент от как можно большей части магнитного поля. Причина, по которой нам нужна субмиллиметровая камера, заключается в том, что галактики испускают огромный спектр разнообразных форм излучения, источники которого – различные компоненты галактик и происходящие в них физические процессы. В случае субмиллиметровых полос этот свет связан с холодной пылью и газом в областях звездообразования. Но мы должны научиться улавливать все формы электромагнитной энергии, приходящей к нам из других галактик.

Каждый день мы имеем дело с самыми разными проявлениями электромагнитного излучения, будь то рентген в больнице, микроволновая печь на кухне или аналоговое радио. Совершенно очевидно, что источники (и природа) излучения, с которым мы сталкиваемся каждый день, сильно различаются и играют разные роли в нашей жизни, но они постоянно нас окружают. Нашим глазам доступны только те волны, к восприятию которых они приспособлены, тогда как радиоприемники и телевизоры могут «видеть» – в некотором смысле – фотоны с длинами волн, намного превышающими видимый свет.

Представьте, что вы можете видеть только радиоволны – тогда мир вам казался бы совсем иным. На самом деле он был бы абсолютно неузнаваемым по сравнению с тем, что мы видим обычно. Но радио могло бы рассказать вам о нашем мире что-то совершенно новое, чего нет в обычном, видимом свете. Только взглянув со всех возможных углов, мы можем создать целостную картину того, как работают галактики. Это называется многоволновым подходом.

Лучшим примером этого подхода могут стать многоволновые изображения нашей Галактики. Все небо нанесено на карту при помощи различных телескопов – от использующих гамма– и рентгеновские лучи очень высоких энергий до УФ-и видимого диапазонов, ближнего, среднего и дальнего инфракрасного и миллиметрового и, наконец, радиодиапазонов. На изображениях неба на любой длине волны преобладает излучение диска и балджа нашей Галактики, и эти карты обычно сориентированы так, чтобы диск горизонтально проходил через центр изображения, проецируясь в то, что мы называем галактическими координатами.

Оптический, или видимый, свет показывает излучение звезд, но по направлению к средней плоскости диска и в центре балджа есть темные пятна, где вид заслоняет межзвездная пыль. Если обратиться к ближнему инфракрасному диапазону (с длинами волн несколько микрон), картина изменится. Мы все еще видим звезды, но на этот раз темных пятен стало меньше: фотоны ближнего инфракрасного диапазона рассеиваются и поглощаются не так легко, как фотоны с оптической длиной волны, что позволяет нам смотреть сквозь межзвездную пыль, как если бы ее там не было. Сейчас мы видим преимущественно свет более старых звезд в Галактике, которые излучают бо́льшую часть своего света в ближней инфракрасной области спектра, причем балдж и диск ярко светятся. Перейдем к дальнему инфракрасному излучению: здесь мы увидим свечение самой межзвездной пыли, снова сконцентрированной в диске и переизлучающей энергию, которую она поглотила от падающего звездного света. Если мы взглянем на очень специфическую радиочастоту – 1,4 ГГц (эквивалентной длине 21-сантиметровой волны), – то обнаружим в Галактике атомарный водород. В этом случае балдж будет не таким заметным, потому что бо́льшая часть радиоизлучения берет свое начало в узкой средней плоскости с атомарным газом в плотном диске Млечного Пути. Если продолжить и просканировать весь электромагнитный спектр, то мы получим полный комплект волн. Все эти разные виды на нашу Галактику представляют собой слои, которые мы можем снять, чтобы понять ее структуру и физику. Мы можем проделывать это как с нашей Галактикой, так и с любой другой. Главное, что мы должны понимать, – любое одноволновое представление о галактике всегда будет неполным, и только объединив данные, мы сможем увидеть полную картину.

Обычно, когда мы просто делаем снимок неба с помощью телескопа, ПЗС или какого-либо другого детектора, мы лишь собираем весь свет, который проходит через какой-то фильтр перед детектором или, в радиоастрономии, диапазон частот, передаваемый приемником, который работает иначе, чем ПЗС. В режиме видимой и ближней инфракрасной длины волны фильтры разделяют оптическую (видимую) часть электромагнитного спектра на сегменты, переходя от синего к красному, – вместе они называются фотометрическими системами. Каждый фильтр ограничивает диапазон частот света, который может попасть в детектор. Самые широкие, то есть охватывающие самый большой диапазон по частоте, – широкополосные фильтры. Изображения далеких галактик, полученные с помощью таких фильтров, предоставляют морфологическую информацию о распределении звездного света: форме галактики (скажем, спиральной или эллиптической), размере балджа по сравнению с диском и т. д. Такие изображения – и есть самая привлекательная сторона астрономии. Но в этом широкополосном свете закодировано намного больше информации. Он может быть разложен подобно белому свету, проходящему через стеклянную призму: цвета, составляющие белый свет, разделяются, потому что монохроматические фотоны преломляются, или изгибаются, слегка различаясь в зависимости от их частоты, то есть цвета. Поэтому когда белый свет проходит через призму, мы и видим радугу цветов – мы рассеяли свет.

Представьте, что вы держите призму и проецируете радугу на экран. Если измерить интенсивность света в каждом из цветов, можно обнаружить, что она увеличивается и падает с каждой определенной отметкой, достигая пика около зеленой/желтой отметки, – это «спектр» нашего Солнца: распределение энергии, испускаемой как функция частоты. Мы можем использовать спектр, чтобы узнать о составе и физике Солнца. Но это всего лишь одна звезда; измеряя спектры целых галактик, мы видим комбинированный свет миллиардов звезд, а также газ между ними.

Чтобы измерить астрономические спектры, мы можем использовать и детекторы ПЗС для записи фотонов, но критически важным здесь становится наличие в аппаратном обеспечении дисперсионного элемента.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.