Астрономия. Популярные лекции - Владимир Георгиевич Сурдин Страница 14
- Категория: Научные и научно-популярные книги / Науки о космосе
- Автор: Владимир Георгиевич Сурдин
- Страниц: 75
- Добавлено: 2022-07-21 08:09:39
Астрономия. Популярные лекции - Владимир Георгиевич Сурдин краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Астрономия. Популярные лекции - Владимир Георгиевич Сурдин» бесплатно полную версию:В книге представлены развернутые и отредактированные записи некоторых лекций, прочитанных в последние годы студентам различных специальностей. Базой для них стал межфакультетский курс МГУ «Основы астрономии». Эти лекции можно использовать как вводный курс для студентов естественно-научных факультетов (физиков, химиков, биологов, географов и геологов), а также математиков и инженеров, которые ранее систематически не изучали астрономию, но в своей работе могут с ней соприкоснуться. Лекции будут небесполезны и для филологов, особенно для переводчиков и редакторов, поскольку знакомят с современной астрономической терминологией и важнейшими понятиями из области космических наук.
Астрономия. Популярные лекции - Владимир Георгиевич Сурдин читать онлайн бесплатно
3. Космонавтика
К антиподам: на спутнике или на метро?
Есть одна интересная задача, которую я традиционно предлагаю на экзамене. Пусть нам требуется послать груз или пассажиров из одной точки Земли в точку, ей противоположную (т. е. к антиподам, потому что с нашей точки зрения все там ходят вверх ногами, притягиваясь к центру Земли). Как это сделать быстрее?
Казалось бы, самый быстрый способ — лететь по круговой орбите спутника. С первой космической скоростью спутник облетает Землю за полтора часа, значит, мы можем прилететь к антиподам через 45 минут плюс время на разгон и торможение. Быстрее не получится: если мы добавим спутнику скорости, он пойдет по дальней орбите и лететь будет дольше. К тому же для реализации этого способа потребуется много денег: надо каждый раз сооружать огромную ракету, тратить очень много энергии на запуск.
Рис. 3.1. Схема «метро» сквозь земной шар.
А вот представьте себе, что мы просверлили Землю насквозь и без начальной скорости просто отпустили снаряд. Он начнет ускоренно падать к центру Земли, затем, набрав скорость, по инерции пролетит через центр и выпрыгнет как раз в антиподальной точке — останется только его вовремя поймать. Такой канал потребуется сделать только один раз, откачать из него воздух, чтобы не замедлял движение, а потом совершенно бесплатно запускать кабину с людьми на ту сторону земного шара и обратно. Вопрос задачи: какое путешествие займет меньше времени — по низкой околоземной орбите искусственного спутника или через центр Земли?
Геостационарная орбита и космический лифт
Среди всех круговых орбит особенно интересна геостационарная орбита, на которой орбитальный период длится столько же, сколько оборот Земли вокруг своей оси, т. е. 23 часа 56 минут и примерно 4 секунды. Если вы запустили спутник на круговую орбиту, лежащую в экваториальной плоскости Земли на расстоянии примерно 36 тыс. км от земной поверхности (от центра планеты это будет 42 тыс. км), то, двигаясь в плоскости экватора с периодом в одни звездные сутки, он всегда будет висеть над одной и той же точкой земного шара (рис. 3.2). Таких спутников летают сотни. А зачем они нужны?
Это, например, спутники прямого телевизионного вещания, их специально запустили на геостационарную орбиту, чтобы нам не приходилось в течение суток крутить домашнюю антенну туда-сюда. Мы один раз нацеливаем свою спутниковую «тарелку» на такой спутник и уверены, что он всегда будет в одной и той же точке неба и никуда не денется.
Интересно, что эта особенность геостационарной орбиты открывает нам совершенно фантастические перспективы для космонавтики. С такого спутника можно протянуть на Землю трос, и он не будет наматываться на Землю, потому что спутник относительно земной поверхности не движется. Вдоль этого шнура или каната можно организовать космический лифт. Заметьте: не ракету, которая 98 % своей массы выбрасывает, чтобы отправить в полет оставшиеся 2 % массы в виде космического корабля, а просто электрический лифт. Прикиньте, сколько в этом случае киловатт-часов электроэнергии потребуется, чтобы подняться в космос: стоить это будет считанные копейки.
Рис. 3.2. Геостационарная орбита. Спутник виден в одной и той же точке неба.
Есть, правда, одна неприятная особенность такого спутника: вот запустили мы его на геостационарную орбиту, протянули канатик, но вдруг какая-то случайная небрежность заставила спутник немного опуститься. Что тогда произойдет? Спутник окажется ближе к центру Земли, его орбитальный период станет короче, т. е. спутник начнет опережать ту точку поверхности, к которой привязан, канат будет наматываться на Землю и тянуть спутник вниз. Тот начнет крутиться еще быстрее — и понятно, что закончится это нехорошо (рис. 3.3). Если привязанный к поверхности спутник опустился ниже геостационарной орбиты, то Земля начнет отставать, намотает на себя канат, затормозит спутник еще сильнее, и он свалится с небес.
Рис. 3.3. Если привязанный к поверхности спутник опустился ниже геостационарной орбиты, то Земля начнет отставать, намотает на себя канат, затормозит спутник еще сильнее, и он упадет. А что случится, если спутник поднимется выше геостационара?
А что случится, если спутник поднимется выше геостационара? Если немного подтолкнуть спутник вверх, он начнет отставать от поверхности Земли: чем больше расстояние, тем меньше скорость обращения и тем больше орбитальный период. Но будет ли это движение устойчивым, не станет ли Земля наматывать канат в обратную сторону? Это простая механическая задача, которую должен быть способен решить любой физик. Вычисления показывают такое развитие событий: если привязанный спутник окажется на чуть большей высоте, чем геостационарная орбита, и начнет отставать от Земли, она сначала за канатик немного подтянет его вперед, а потом он снова отойдет на исходное расстояние от поверхности. Но после этого спутник уже не отстанет от вращения Земли, потому что
Жалоба
Напишите нам, и мы в срочном порядке примем меры.