Мир в ореховой скорлупке (илл. книга-журнал) - Хокинг Стивен Уильям Страница 20
- Категория: Научные и научно-популярные книги / Науки о космосе
- Автор: Хокинг Стивен Уильям
- Страниц: 39
- Добавлено: 2020-09-16 05:34:21
Мир в ореховой скорлупке (илл. книга-журнал) - Хокинг Стивен Уильям краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Мир в ореховой скорлупке (илл. книга-журнал) - Хокинг Стивен Уильям» бесплатно полную версию:Мир в ореховой скорлупке (илл. книга-журнал) - Хокинг Стивен Уильям читать онлайн бесплатно
Как обнаружить черную дыру, если из нее не может выйти свет? Ответ состоит в том, что черная дыра продолжает притягивать окружающие объекты с той же силой, с какой это делало сколлапсировавшее тело. Если бы Солнце без потери массы превратилось в черную дыру, планеты продолжали бы обращаться по орбитам так же, как ныне.
Поэтому один способ поиска черных дыр состоит в наблюдении вещества, которое обращается вокруг того, что представляется невидимым компактным объектом. Наблюдается целый ряд таких систем. Пожалуй, наиболее впечатляющи гигантские черные дыры, встречающиеся в центрах галактик и квазаров (рис. 4.14).
Рис. 4.14Сверху вниз:
Галактика NGC4151, снятая широкоугольной планетной камерой.
Горизонтальная линия, пересекающая изображение, порождена светом, который испущен черной дырой в центре NGC 4151.
Изображение, показывающее скорости излучающего кислорода. Все факты говорят о том, что NGC 4151 содержит черную дыру массой в 100 млн раз больше Солнца.[12]
Обсуждавшиеся до сих пор свойства черных дыр не создают никаких серьезных проблем для детерминизма. Для астронавта, который падает в черную дыру и попадает в сингулярность, время заканчивается. Однако в общей теории относительности каждый волен отсчитывать время с разной скоростью в разных местах. Можно поэтому ускорять часы астронавта по мере его приближения к сингулярности, так что они по-прежнему зарегистрируют бесконечный интервал времени[13]. На той же диаграмме «время — расстояние» (рис. 4.15) поверхности постоянных значений этого нового времени все плотнее располагались бы у центра под той точкой, где появляется сингулярность. Но они согласовывались бы с обычными отсчетами времени в почти плоском пространстве вдали от черной дыры.
Астронавт опустился на поверхность коллапсирующей звезды в 11:59:57 и вместе со звездой сжимается ниже критического радиуса, за которым гравитация столь сильна, что никакой сигнал не может оттуда выйти. На корабль, который обращается вокруг звезды, он посылает сигналы с регулярными интервалами по своим часам.
Наблюдающий за звездой с расстояния никогда не увидит, что она пересекла свой гравитационный радиус и вошла в черную дыру. Для него все будет выглядеть так, будто звезда зависла над самым критическим радиусом, а часы на ее поверхности замедлили свой ход и остановились.
Можно использовать это время в уравнении Шрёдингера и вычислить волновую функцию в более позднее время, зная ее исходное состояние. Так что у нас все еще остается детерминизм. Это лучше, чем ничего, однако позднее часть волновой функции оказывается внутри черной дыры, где ее никто не может наблюдать снаружи. Поэтому наблюдатель, который достаточно разумен, чтобы не упасть в черную дыру, не сможет прогнать уравнение Шрёдингера назад и вычислить волновую функцию в более ранние времена. Для этого ему надо было бы знать часть волновой функции, которая находится внутри черной дыры. Она содержит информацию о том, что упало в черную дыру. Потенциально это может быть огромный объем информации, поскольку черная дыра с заданной массой и скоростью вращения может быть образована очень большим числом сочетаний частиц; черная дыра не зависит от природы тела, коллапс которого привел к ее образованию. Джон Уилер сформулировал это так: «Черная дыра не имеет волос», чем укрепил французов в их подозрениях.
Джон УилерДжон Арчибальд Уилер родился в 1911 г. в Джексонвилле, Флорида. Он получил степень доктора в 1933 г. за работу по рассеянию света на атомах гелия. В 1938 г. Уилер работал с датским физиком Нильсом Бором над теорией ядерного распада. Позднее вместе со своим аспирантом Ричардом Фейнманом вплотную занялся электродинамикой, но вскоре после этого США вступили во Вторую мировую войну, и обоих ученых привлекли к участию в Манхэттенском проекте.
В начале 1950-х гг. под впечатлением от статьи Роберта Оппенгеймера о гравитационном коллапсе, опубликованной в 1939 г., Уилер заинтересовался общей теорией относительности Эйнштейна. В то время большинство специалистов были увлечены ядерной физикой, полагая, что общая теория относительности не имеет практически никакого отношения к реальному физическому миру. Работая почти в одиночку, Уилер изменил этот взгляд как своими исследованиями, так и тем, что читал в Принстоне первый курс лекций по теории относительности.
Значительно позднее, в 1969 г., он придумал термин «черная дыра» для сколлапсированного состояния материи, в существование которого мало кто верил. Вдохновленный работами Вернера Израэля, он выдвинул предположение о том, что «черные дыры не имеют волос». Иначе говоря, сколлапсированное состояние любой невращающейся массивной звезды действительно может быть описано решением Шварцшильда.
Трудности для детерминизма возникли, когда я открыл, что черные дыры не вполне черные. Как было показано в главе 2, квантовая теория говорит, что поля не могут быть в точности нулевыми, даже в вакууме. Если бы они оказались нулевыми, то обладали бы точной величиной или положением, равным нулю, и точно известным темпом изменения или скоростью, тоже равной нулю. Это было бы нарушением принципа неопределенности, который утверждает, что нельзя одновременно точно определить и положение, и скорость. Все поля должны испытывать так называемые вакуумные флуктуации некоторой величины (аналогично маятнику с нулевыми колебания из главы 2). Флуктуации вакуума можно интерпретировать несколькими способами, которые кажутся различными, но в действительности математически эквивалентны. С позитивистской точки зрения мы свободны использовать тот взгляд, который наиболее эффективен для решения конкретной задачи. В данном случае полезно рассматривать флуктуации вакуума как появление пар виртуальных частиц, которые возникают вместе в некоторой точке пространства-времени, разлетаются, а затем сходятся и аннигилируют друг с другом. «Виртуальные» означает, что эти частицы недоступны для непосредственного наблюдения, но их побочные эффекты могут быть измерены и согласуются с теоретическими предсказаниями с поразительной степенью точности (рис. 4.16).
Рис. 4.16В пустом пространстве пары частиц появляются, ведут недолгое существование, а затем аннигилируют друг с другом.
В присутствии черной дыры одна из частиц пары может упасть в черную дыру, в то время как другая свободно уйдет на бесконечность (рис. 4.17). Издали такие частицы будет казаться испущенными черной дырой. Спектр черной дыры будет в точности таким, как у тела с температурой, пропорциональной гравитационному полю на горизонте — границе черной дыры. Другими словами, температура черной дыры зависит от ее размера.
Рис. 4.17Виртуальные частицы, возникающие и аннигилирующие друг с другом вблизи горизонта событий черной дыры
Одна из пары частиц падает в черную дыру, тогда как другой удается ускользнуть на свободу. Снаружи горизонта событий это выглядит так, будто черная дыра испускает те частицы, которым удалось ускользнуть.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.