Люди на Луне [litres] - Виталий Юрьевич Егоров Страница 35
- Категория: Научные и научно-популярные книги / Науки о космосе
- Автор: Виталий Юрьевич Егоров
- Страниц: 86
- Добавлено: 2022-12-14 16:10:05
Люди на Луне [litres] - Виталий Юрьевич Егоров краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Люди на Луне [litres] - Виталий Юрьевич Егоров» бесплатно полную версию:На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге.
Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну.
Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»
Люди на Луне [litres] - Виталий Юрьевич Егоров читать онлайн бесплатно
МЕЖДУНАРОДНАЯ КОСМИЧЕСКАЯ СТАНЦИЯ (МКС)
По данным российско-европейского эксперимента «Матрешка-Р», проведенного в сотрудничестве с Европейским космическим агентством, среднее облучение экипажа в модуле «Звезда» российского сегмента МКС в период солнечного минимума составляет 0,014–0,018 рад в сутки, что практически совпадает с данными Apollo 14. При этом уровень облучения на внешней части МКС составляет 0,15 рад, т. е. примерно в 10 раз больше, чем внутри станции. Скафандр экранирует примерно две трети излучения – до 0,05 рад в сутки.
Модуль «Звезда» обеспечивает экипаж средним экранированием в 30 г на кв. см, что сравнимо с командным модулем Apollo.
Основная масса заряженных частиц, которая обрушивается на МКС, относится к радиационным поясам нашей планеты. Радиационный детектор Европейского космического агентства R3DR2 на внешней части Международной космической станции определил уровень воздействия галактических космических лучей в размере 0,007 рад в сутки. Это в 4,5 раза меньше, чем в межпланетном пространстве. Радиационные пояса вносят основной вклад в облучение станции, оставляя галактическим космическим лучам и солнечным протонным событиям менее 40 % от суммарной дозы.
Размещенный на внешней части модуля «Звезда» блок дозиметров «Матрешка». Роскосмос, JAXA, ESA
Полярные сияния, где потоки солнечных заряженных частиц взаимодействуют с атмосферой Земли, начинаются с высоты 900 км. То есть Международная космическая станция, летающая на высоте 400 км, частично прикрыта и земным магнитным полем, и верхними слоями атмосферы. Все это снижает воздействие галактических космических лучей примерно вдвое. Земля своим «телом» и плотными слоями атмосферы прикрывает околоземные спутники, космические корабли и станции примерно от половины космических лучей. Тот же эффект наблюдается на низкой орбите и поверхности Луны и Марса.
Еще один важный результат получен на МКС российско- болгарским дозиметром-радиометром «Люлин-5»: на степень воздействия радиационных поясов значительно влияет ориентация станции. Если тело станции перекрывает поток, то уровень облучения падает в четыре раза. Эти данные можно использовать в будущих полетах через радиационные пояса и далее – на Луну и Марс.
Уровни накопленной дозы дозиметра Van Allen Probes в зависимости от толщины слоя алюминиевой защиты. NASA
РАДИАЦИОННЫЕ ПОЯСА ВАН АЛЛЕНА
Наиболее активное изучение околоземных радиационных поясов вели два зонда NASA под названием Van Allen Probes с 2012 по 2019 год. Согласно их данным, накопленным почти за тысячу суток полета, облучение внутри радиационных поясов в среднем составляет 10 рад в сутки для дозиметра, защищенного 1 см алюминия.
Также более 20 лет на расстоянии примерно 1,5 млн км от Земли со стороны Солнца работает космический аппарат ACE (Advanced Composition Explorer), который измеряет потоки солнечного излучения и галактических частиц. Спектрометр наиболее тяжелых заряженных частиц CRIS (Cosmic Ray Isotope Spectrometer), размещенный на ACE, показал разницу от 0,016 рад в сутки облучения в солнечный максимум до 0,043 рад в сутки во время солнечного минимума для незащищенных элементов. Защита в 1 см алюминия обеспечила снижение уровня облучения на 30–40 %.
В 2014 году NASA провело испытательный беспилотный запуск прототипа межпланетного космического корабля Orion («Орион»), который должен в будущем обеспечить полеты людей в окололунное пространство. На борту корабля размещалась пара дозиметров BIRD (Battery-operated Independent Radiation Detector, или независимый радиационный детектор на батарейке). Полет командного модуля Orion продолжался 4 часа 24 минуты, за это время аппарат совершил два витка вокруг Земли, один из которых – по вытянутой орбите. В первом витке достигнута высота 400 км, на втором – 5800 км. На втором витке Orion дважды пересек нижний радиационный пояс Земли – в течение 10 минут во время подъема и в течение 45 минут во время спуска. В первом случае пиковая доза достигла 0,002 рад в минуту, а во втором – 0,1 рад в минуту. Суммарная накопленная доза за весь полет составила на одном дозиметре 1,8 рад, на втором – 1,6 рад. Экранирование прибора было эквивалентно 6,5 см алюминия.
ПОЛЕТ НА ЛУНУ
Радиацию вокруг Луны и на ее поверхности измеряли также еще до пилотируемых полетов. Счетчик Гейгера внутри корпуса советского спускаемого аппарата «Луна-9» в 1966 году посчитал радиационный фон в размере 0,03 рад в сутки, а во время полета было примерно на треть больше. Эти показания очень близки к результатам Apollo.
Серия из пяти американских окололунных аппаратов Lunar Orbiter в своих полетах в 1966–1967 годах регистрировали радиацию в радиационных поясах Земли по пути к Луне и на орбите вокруг нее. Их показания значительно различались в зависимости от солнечной активности во время полета. На каждый аппарат приходилась пара датчиков радиации, которые находились в разных участках внутри герметичных корпусов с фотокамерами. Один датчик закрывался слоем алюминия толщиной 7,5 мм, второй – 0,6 мм. Первый датчик включался до прохождения радиационных поясов, а второй – после; кроме того, также они имели разную чувствительность.
Такой сильный разброс показаний связан с невысокой степенью защиты дозиметров Lunar Orbiter и изменением солнечной активности. Серьезный вклад в облучение вносили даже слабые солнечные вспышки. Без вспышек обошлась первая часть полета Lunar Orbiter 2, и он показал, что преодоление радиационного пояса дает 0,75 рад облучения, а обычный фон галактического излучения добавляет около 0,03 рад в сутки за защитой 7,5 мм алюминия, что подтверждается другими измерениями.
Копия антропоморфного манекена, который совершил полет к Луне на борту «Зонда-7», в экспозиции Мемориального музея космонавтики в Москве. Фото автора
В 1968–1969 годах Советский Союз запускал к Луне прототипы космических кораблей «Зонд-5», «Зонд-6», «Зонд-7», они облетали Луну и возвращали на Землю спускаемый аппарат, подобный тем, что планировали использовать в пилотируемых полетах. Во всех трех полетах радиационные детекторы, размещенные внутри спускаемого отсека, показали накопленную дозу не выше 3,5 рад, т. е. не более 0,6 рад в сутки. Разработчики отмечали, что основной вклад в облучение вносил радиационный пояс Земли, что совпадает с данными Lunar Orbiter.
В спускаемом отсеке «Зонда-7» находился человекоподобный манекен с радиационными датчиками. Манекен специально изготовили из материалов, близких к человеческому организму по свойствам пропускать и поглощать радиацию. Его задачей было определение степени биологического воздействия космической радиации на экипаж внутри космического корабля и даже на органы внутри тела. Детекторы на основе так называемой ядерной эмульсии размещались в «Зонде-5» рядом с контейнерами биологических образцов, а в «Зонде-7» – на поверхности манекена и внутри его на глубине 5 см. Эмульсии показали вполне обнадеживающие результаты. По данным автореферата Л. Н. Смиренного на соискание ученой степени доктора технических наук, на поверхности манекена суммарная накопленная доза составила около 0,1–0,3 рад,
Жалоба
Напишите нам, и мы в срочном порядке примем меры.