Лев Мухин - В нашей галактике Страница 5

Тут можно читать бесплатно Лев Мухин - В нашей галактике. Жанр: Научные и научно-популярные книги / Науки о космосе, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Лев Мухин - В нашей галактике

Лев Мухин - В нашей галактике краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Лев Мухин - В нашей галактике» бесплатно полную версию:

О современных представлениях об образовании звезд, планет, малых тел, о новых данных исследований планет Солнечной системы, которые не только расширили наши представления об окружающем мире, но и поставили перед учеными новые интригующие загадки, рассказывает эта книга.

Лев Мухин - В нашей галактике читать онлайн бесплатно

Лев Мухин - В нашей галактике - читать книгу онлайн бесплатно, автор Лев Мухин

Первый, кто попытался с чисто научных позиций проанализировать этот вопрос, был немецкий врач Ю. Майер. Имя его навсегда сохранилось для человечества отнюдь не из-за его успехов в медицине. Он обессмертил себя, открыв в 1842 году закон сохранения энергии. (Кстати, в этом же году произошло полное солнечное затмение, принесшее астрономам массу новой информации о Солнце.) Установив закон сохранения энергии для земных явлений, Майер задался таким вопросом. Если на Земле непрерывно происходят превращения одних форм энергии в другие, то любой достаточно серьезный анализ проблемы неуничтожимости энергии с неизбежностью ставит задачу: где источник солнечного излучения? Как может Солнце излучать огромное количество энергии со столь завидным постоянством?

Решая эту головоломку, Майер пришел к неожиданному и интересному выводу. Он предположил, что излучение Солнца, его тепло обеспечивается кинетической энергией падающих на Солнце метеоритов (Ньютон говорил о кометах). Ведь приходят же на Землю метеорные тела из космического пространства, так почему бы им не падать на Солнце?

Однако очень скоро выяснилось, что Майер ошибся. Когда ученые попытались оценить, сколько же вещества нужно «добавлять» к Солнцу, чтобы поддерживать его излучение, они получили цифру, составляющую одну тридцатимиллионную долю массы Солнца. Именно такое количество метеорных тел должно было бы ежегодно бомбардировать Солнце, чтобы обеспечить постоянство его излучения.

На первый взгляд эта цифра кажется небольшой. Ну, подумаешь, каждый год на Солнце выпадает масса метеоров, общим весом примерно равных Марсу. Но тут свое слово сказали специалисты по небесной механике. Они вычислили, что даже столь незначительное увеличение массы нашей звезды привело бы к изменению продолжительности земного года — он стал бы ежегодно укорачиваться на две секунды. Именно этот факт явился смертельным ударом по гипотезе Майера: ведь и в тысячи раз меньшая величина давным-давно была бы замечена при наблюдениях.

Кроме того, давайте воспользуемся таблицей умножения и посмотрим, что получится, если умножить возраст Земли (4,5 миллиарда лет) на те самые две секунды ежегодного уменьшения года. Другими словами, посмотрим, чему был равен год в начале жизни Земли, если бы Майер оказался прав. Мы получим совершенно абсурдную цифру: Земля должна была бы крутиться вокруг Солнца очень медленно, год продолжался бы… более сотни нынешних земных лет. Вот поэтому пришлось искать другие пути решения вопроса о постоянстве светимости Солнца.

Два выдающихся физика — Г. Гельмгольц и Д. Томсон (лорд Кельвин) — в конце XIX века предположили, что Солнце сжимается, уменьшая свой радиус на несколько десятков метров ежегодно, под воздействием собственной гравитации. За счет этого выделяется тепловая энергия, которая и поддерживает постоянную светимость Солнца. Но и эта гипотеза оказалась несостоятельной, несмотря на ее привлекательность и в общем-то физическую обоснованность. Как это нередко бывает в физике, «контракционная» гипотеза во много опередила свое время. Она правильно могла бы обрисовать начальные стадии эволюции звезды, но оказалась неприемлемой для объяснения светимости стабильного Солнца. И действительно, точные расчеты показали, что, используя механизм Гельмгольца — Кельвина, Солнце могло бы светить не более 30 миллионов лет. А нам нужны миллиарды. Разница, как мы видим, немалая.

Но если ни гравитационная, ни кинетическая энергии не могут обеспечить нормальной работы нашего светила в течение миллиардов лет, то что же тогда?

Выдающийся астроном Д. Джинс предположил, что источником энергии Солнца является его радиоактивность. Это уже было, как говорится в детской игре, «теплее». Именно «теплее», потому что Джинс тоже был далек от истины. Сейчас любой студент, а может быть, даже и школьник, сумел бы доказать, что энергия радиоактивного распада никогда не сможет обеспечить светимость звезды. И тем не менее Джинс находился рядом с решением вопроса. Все дело действительно было в ядерных процессах.

А. Эддингтон понимал, что в Солнце должен работать самостоятельный источник энергии, и правильно назвал его. Этот источник — энергия атомного ядра. Однако естественно, что в то время Эддингтон не мог указать конкретные механизмы ядерных реакций.

А. Эддингтон и без того достаточно натерпелся от своих земляков — именитых английских физиков и астрономов. Его идеи были почти всегда столь неожиданными и экстравагантными, что немедленно вызывали бунт коллег и ставились под сомнение, хотя именно Эддингтона следует считать одним из пионеров и создателей новой науки — астрофизики. Но это мы знаем сейчас… В те же времена многие просто-напросто смеялись над Эддингтоном. Он, разумеется, не оставался в долгу. И когда ему говорили, что недра звезд недостаточно горячи, чтобы там могли идти ядерные реакции, он с раздражением советовал своим оппонентам отправиться поискать местечко погорячее, чем внутренность звезды, имея в виду ад.

Среди оппонентов Эддингтона были директор Кавендишской лаборатории, знаменитый физик Д. Томсон, открывший существование электрона, Джинс и другие. Просто дело было в том, как утверждает крупнейший астрофизик Ф. Хойл, что великий Джинс почему-то всегда оказывался не прав, а Эддингтон — прав. Этот «одинокий и непонятый» Эддингтон был гениален и как физик, и как личность. Блистательно владея математическим аппаратом, он с известной мерой брезгливости относился к приближенным вычислениям, всегда стремясь получить точную формулу. Мысль его работала столь четко и ясно, что когда он написал книгу с изложением основ теории относительности, то Эйнштейн в шутку сказал: «Я стал лучше понимать собственную теорию, прочтя книгу Эддингтона». Но ведь в каждой шутке есть доля правды.

Полемика между Эддингтоном и Джинсом развлекала и удивляла ученых в течение многих лет, и лишь в 1939 году американский физик, лауреат Нобелевской премии Г. Бете сумел построить количественную теорию, объясняющую ядерные процессы в звездах. Был наконец перекинут мост между микро- и макромиром и показано, что звезды суть не что иное, как гигантские термоядерные реакторы.

Прежде чем подробно обсудить эту увлекательнейшую тему, вернемся на время к известным законам физики. Это поможет нам лучше понять, почему лишь термоядерные реакции обеспечивают постоянную светимость Солнца и почему именно благодаря им существует на Земле все живое.

В своем изучении биографии нашей звезды — Солнца — мы остановились на том, что оно стало стабильной звездой, вступило в стадию спокойной (конечно, относительно, как мы потом увидим) жизни. Что же представляет собой Солнце сегодня?

Протозвезда стала звездой. Перед нами желтый карлик. Вес его весьма солиден: если бы мы на одну чашу весов положили Солнце, то, чтобы его уравновесить, на другую чашу пришлось бы положить более трехсот тысяч таких планет, как Земля или Венера. Размеры нашего карлика тоже изрядны. Его объем более чем в миллион раз превышает объем Земли.

Солнце излучает огромное количество тепловой энергии. Чтобы представить себе количество этой энергии, приводят обычно следующий пример. Если бы нам удалось мгновенно обложить все Солнце слоем льда толщиной 12 метров, то уже через минуту он бы растаял. А если от Земли к Солнцу перебросить цилиндр из льда диаметром в 3 километра, а потом все излучение Солнца «вогнать» в этот цилиндр, то через 9 секунд эта ледяная колонна превратилась бы в пар. Полная энергия, выделяющаяся при делении килограмма урана-235, около 20 миллиардов килокалорий. Так вот, Солнце ежесекундно излучает энергии в тысячи миллиардов раз больше, чем при ядерном взрыве килограмма урана-235.

А что же такое Солнце с точки зрения физика? Ответ прост, хотя и не сразу очевиден. Солнце — раскаленный газовый шар. Почему газовый? Давайте-ка разделим массу Солнца на его объем, чтобы узнать плотность нашей звезды. Мы тогда получим цифру 1,4 грамма в кубическом сантиметре, то есть побольше, чем плотность воды. О каком газе может идти речь? К тому же это средняя плотность, а ведь в центре Солнца плотности должны быть куда больше, чем полученная цифра.

Все дело в том, что температуры в недрах Солнца огромны — более десяти миллионов градусов, и при таких температурах ни жидкая, ни твердая фазы вещества существовать не могут. И тогда Солнце действительно газовый шар. А что это означает для физика? Да то, что он для описания «поведения» Солнца может использовать, в частности, простейшую формулу, известную из школьного курса физики под названием формулы Клайперона. Она устанавливает связь между температурой, давлением, плотностью и молекулярным весом определенного объема газа.

Но неужели все так просто и жизнь Солнца физик опишет только законом поведения идеального газа? Ведь если бы действовал только этот физический закон, Солнце очень быстро рассеялось бы в космическом пространстве?

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.