Как появилась Вселенная? Большие и маленькие вопросы о космосе - Герайнт Фрэнсис Льюис Страница 5
- Категория: Научные и научно-популярные книги / Науки о космосе
- Автор: Герайнт Фрэнсис Льюис
- Страниц: 41
- Добавлено: 2024-04-25 07:57:33
Как появилась Вселенная? Большие и маленькие вопросы о космосе - Герайнт Фрэнсис Льюис краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Как появилась Вселенная? Большие и маленькие вопросы о космосе - Герайнт Фрэнсис Льюис» бесплатно полную версию:Кванты – это сверхмалые частицы, кирпичики «всего», космос – это триллионы звёзд и постоянно расширяющихся галактик. Жизнь на необъятных просторах Вселенной неотделима от взаимодействий в масштабах кварков. Объединяя эти измерения, авторы книги – ученые-физики, ведут диалог в поисках ответов на самые фундаментальные вопросы науки:
– Откуда во Вселенной вещество?
– Вечна ли материя?
– Как разгадать «химию» небес?
– Почему умирая, звезды взрываются?
– Как выглядит «теория всего»?
С авторами этой книги, учеными-физиками, мы погрузимся в глубокое прошлое Вселенной и заглянем в ее далекое будущее сквозь «оптику» квантового мира, а более понятным это изучение сделают иллюстрации этой книги.
В формате PDF A4 сохранен издательский макет книги.
Как появилась Вселенная? Большие и маленькие вопросы о космосе - Герайнт Фрэнсис Льюис читать онлайн бесплатно
Чтобы осознать потрясающее значение этого открытия, потребовалось очень мало времени. Если завтра галактики будут дальше друг от друга, чем сегодня, значит, вчера они были ближе. А если заглядывать в прошлое всё дальше и дальше, получится, что галактики располагались в пространстве всё теснее и теснее. В точке прошлого, отстоящей от сегодняшнего дня на 14 миллиардов лет, расстояния между всеми галактиками обратятся в нуль.
Это стартовая точка расширения, которое мы наблюдаем сегодня. Это значит, что в прошлом был момент рождения Вселенной, день, у которого не было «вчера».
Так как вся материя Вселенной была тогда сжата воедино, в далёком прошлом она, конечно, была горячее и плотнее, чем сегодня, а в первые моменты своего существования была ОЧЕНЬ плотной и горячей. Знаменитый астроном Фред Хойл назвал это огненное рождение «Большим Взрывом». Но в устах Хойла этот термин звучал скорее насмешливо: учёный не мог смириться с мыслью, что у Вселенной есть начало. У него была своя концепция Вселенной, которая расширяется, но существовала вечно, – так называемая теория устойчивого состояния. Но об этом – в другое время и в другой книге.
Несмотря на зловещее название, идея Большого Взрыва прижилась и представление о расширяющейся Вселенной, рождённой в конкретный момент прошлого, стала лучшим объяснением того, что мы наблюдаем в космосе.
К идее Большого Взрыва нас привела общая теория относительности Эйнштейна. Но, чтобы описать сложные взаимодействия, которые происходили, когда Вселенная была невообразимо горячей и плотной, нужны и другие физические представления. Помимо мощного притягивающего действия гравитации, между основными «строительными кирпичиками» вещества – элементарными частицами, такими, как электроны и кварки – происходили интенсивные столкновения. Значит, мы не можем не принимать во внимание и другие фундаментальные силы взаимодействия: электромагнетизм, сильное взаимодействие и слабое взаимодействие. В этой книге нам не раз предстоит вернуться к фундаментальным силам, но пока запомним одно: каждое из этих трёх физических взаимодействий описывается законами и математическим языком квантовой механики.
На самых ранних стадиях жизни Вселенной гравитация и все остальные силы боролись друг с другом за власть. Поэтому при описании Вселенной в равной мере нельзя пренебрегать ни квантовой механикой, ни общей теорией относительности. Но мы до сих пор не знаем, как согласовать эти две совершенно разных парадигмы, чтобы они объединились естественно и непринуждённо.
Если мы захотим описать самые ранние стадии жизни Вселенной, придётся вразнобой применять одновременно разные виды математического аппарата в попытках объединить все четыре фундаментальные силы (гравитацию, электромагнетизм, сильное и слабое взаимодействия) во что-то, что (как мы надеемся) будет работать.
Способов одновременно применять разные математические методы много, и мы не знаем, насколько хорошо тот или иной подход ближе к суровой реальности самых ранних дней нашей Вселенной. На этом пути мы рано или поздно достигаем некоторой точки, в которой, сколько бы мы ни вглядывались в более ранние моменты истории Вселенной, наша «математика Франкенштейна» просто перестаёт работать. Мы упираемся в стену, преграждающую движение наших физических теорий, и видим, что не можем продвинуться вперёд ни на шаг. Эта стена не позволяет нам разобрать механизм рождения Вселенной и ответить на важнейший вопрос: откуда же она взялась?
И всё же у нас ещё есть возможность поразмышлять над этим вопросом и попытаться представить, как мог бы выглядеть ответ на него.
Для этого нам придётся немного подумать о том, что такое ничто. Ничто, полное и абсолютное ничто! Проще некуда?
Что такое Ничто
«Ничто» – понятие, вокруг которого ломают копья и физики, и философы. Возьмём участок пространства, освобождённый от любых видов вещества и излучения. Это «ничто» в его простой разновидности. Но «ничто» может быть и другого вида – когда отброшены и сами пространство и время. Представить это гораздо труднее.
Поэтому для начала подумаем просто о пустом участке пространства и времени вокруг нас.
Представьте, что вы вышли в открытый космос в скафандре и смотрите на окружающую вас Вселенную. В какой-то момент вам может показаться, что пустота пространства тоже вглядывается в вас. Всматриваясь в ничто, мы рискуем ощутить ни с чем не сравнимое чувство экзистенциального ужаса, избавление от которого приходит из самого неожиданного источника: из квантовой физики. Ведь даже само пустое пространство бурлит непрестанно возникающими и вновь уходящими в небытие частицами, которые называются квантовыми флюктуациями[9].
Казалось бы, «непрестанно возникающие и вновь уходящие в небытие частицы» – просто очередная причудливая идея, выдуманная учёными, чтобы сбить всех с толку. Но на деле присутствия таких частиц требует глубинная структура квантовой механики. А мы, хотя и не способны наблюдать их непосредственно, можем измерять их влияние на мир вокруг нас.
Как видно из самого их названия, квантовые флюктуации – нечто мимолётное и переменчивое. Но они всегда были и всегда будут. Единственное, что остаётся постоянным в вечной Вселенной, – никогда не прекращающееся движение квантовой энергии.[10] Но семена нашего понимания квантовых флюктуаций были посеяны лишь около ста лет назад.
Первые мысли о квантовой механике – и квантовых флюктуациях – появились на скалистом, безлиственном острове Гельголанд в Северном море. В 1925 году там, спасаясь от сенной лихорадки, донимавшей его в его родной Германии, физик-теоретик Вернер Гейзенберг заложил математические основы квантовой теории. До тех пор физики прилагали огромные усилия, чтобы объяснить последние результаты своих экспериментов над микроскопическими частицами: сталкивали друг с другом атомы и посылали пучки субатомных частиц через электрические и магнитные поля с помощью математики Ньютона и Максвелла, но никак не могли поставить прочно установившийся свод теорий и научных законов – то, что мы теперь называем классической физикой – на службу описанию проводимых наблюдений и экспериментов.
Все прекрасно знали – как мы знаем это и сегодня – что при умножении чисел не имеет значения, в каком порядке мы их умножаем. Единожды два умножить на три даст то же, что трижды два умножить на единицу. Но это простое и, казалось бы, очевидное математическое правило не действовало в новых экспериментах, проводимых в рамках квантовой механики.
Дерзкая мысль Гейзенберга состояла в том, чтобы использовать новые абстрактные математические объекты, которые можно было бы умножать, но так, чтобы ответ зависел от мест множителей: A, умноженное на B, могло не быть равным B, умноженному на A. Конечно, на первый взгляд это выглядит странно, но затем оказывается, что это правило отлично подтверждается при действиях с числовыми таблицами. Такие таблицы называются матрицами. Математический аппарат Гейзенберга стали называть матричной механикой[11], а теперь он известен как квантовая механика.
Но Гейзенбергу – как и любому другому физику того времени – было, конечно, невдомёк, какие
Жалоба
Напишите нам, и мы в срочном порядке примем меры.