Джон Лайонз - Введение в теоретическую лингвистику Страница 29

Тут можно читать бесплатно Джон Лайонз - Введение в теоретическую лингвистику. Жанр: Научные и научно-популярные книги / Языкознание, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Джон Лайонз - Введение в теоретическую лингвистику

Джон Лайонз - Введение в теоретическую лингвистику краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Джон Лайонз - Введение в теоретическую лингвистику» бесплатно полную версию:
Книга известного английского ученого Джона Лайонза «Введение в теоретическую лингвистику» дает широкую картину основных направлений, бытующих в современной науке о языке, а также знакомит читателя с основными проблемами языкознания. При этом автор учитывает как положения традиционной лингвистики, так и новейшие теоретические идеи.Книга Джона Лайонза представляет интерес для лингвистов всех профилей, а также для специалистов по психологии, социологии, вычислительной математике и другим наукам. Она может быть использована в качестве учебного пособия для филологических факультетов университетов и педагогических вузов.Перевод с английского языка под редакцией и с предисловием В. А. ЗВЕГИНЦЕВАПереводы: Н. Н. ПЕРЦОВОЙ (глава 1), Т. В. БУЛЫГИНОЙ (главы 2—6), Б. Ю. ГОРОДЕЦКОГО (главы 7—10 и примечания).

Джон Лайонз - Введение в теоретическую лингвистику читать онлайн бесплатно

Джон Лайонз - Введение в теоретическую лингвистику - читать книгу онлайн бесплатно, автор Джон Лайонз

2 × 2 × 2 = 8, 2 × 2 × 2 × 2 = 16 и т. д.

и

8 = 8, 8 × 8 = 64, 8 × 8 × 8 = 512 и т. д.

Основанием, в связи с которым мы выбрали для сравнения бинарную систему (с двумя элементами) и восьмеричную систему (с восемью элементами), является то обстоятельство, что 8 — это целая степень от 2: это 2 в 3-й степени, а не 2 в степени 3,5 или 4,27 и т. п. Это четко выявляет связь между парадигматическим контрастом и синтагматической «длиной». При прочих равных условиях минимальная длина слов в бинарной системе в три раза больше длины слов в восьмеричной системе. Мы используем это частное числовое соотношение в следующем разделе. В последующих главах, особенно в главе, посвященной семантике, мы обратимся к более общему принципу, согласно которому лингвистически существенные различия могут проводиться как на основе синтагматических, так и на основе парадигматических критериев.

Отметим, что понятие «длины», которое мы только что рассмотрели, определяется в зависимости от числа позиций парадигматического контраста в пределах синтагматического комплекса. Оно не обязательно связано с временной последовательностью. Это положение (вытекающее из сказанного ранее в настоящем разделе — см. § 2.3.6) весьма существенно для последующего обсуждения фонологической, грамматической и семантической структур.

2.4. СТАТИСТИЧЕСКАЯ СТРУКТУРА *

2.4.1. ФУНКЦИОНАЛЬНАЯ НАГРУЗКА *

Не все парадигматические противопоставления, или контрасты, в равной степени существенны для функционирования языка. Они могут значительно отличаться друг от друга по своей функциональной нагрузке. Чтобы пояснить значение этого термина, можно рассмотреть некоторые противопоставления в пределах фонологической системы английского языка.

Субстанциальная реализация многих слов устного английского языка различается тем, что в одном и том же окружении в одних случаях встречается [p], а в других — [b] (ср. pet : bet, pin : bin, pack : back, cap : cab и т. д.); на основе этого контраста мы можем установить оппозицию между /р/ — /b/, которые, по крайней мере на этом этапе, мы можем рассматривать как два минимальных элемента выражения языка (под «минимальной» мы подразумеваем далее не разложимую единицу). Поскольку многие слова различаются благодаря оппозиции /р/ — /b/, контраст между этими двумя элементами несет высокую функциональную нагрузку. Другие противопоставления несут более низкую функциональную нагрузку. Например, относительно небольшое число слов различается в субстанциальной реализации наличием одного, а не другого из двух согласных, которые встречаются в конечном положении в словах wreath 'венок' и wreathe 'плести венки' (символы этих двух звуков в Международном Фонетическом Алфавите — соответственно [θ] и [ð]; ср. § 3.2.8); весьма небольшое количество слов, если они вообще существуют, отличается друг от друга противопоставлением звука, фигурирующего в начале слова ship, звуку, представленному вторым согласным в словах measure или leisure (эти два звука обозначаются в Международном Фонетическом Алфавите соответственно [ʃ] и [ʒ]). Функциональная нагрузка контрастов между [θ] и [ð] и между [ʃ] и [ʒ] таким образом намного ниже, чем функциональная нагрузка контраста /р/ : /b/.

Значение функциональной нагрузки очевидно. Если говорящие на некотором языке не сохраняют последовательно те противопоставления, благодаря которым высказывания с разным значением отличаются друг от друга, то это может привести к неправильному пониманию. При прочих равных условиях (мы еще к этому вернемся) чем выше функциональная нагрузка, тем более важно, чтобы говорящие овладели отдельным противопоставлением как частью своих «речевых навыков» и последовательно сохраняли его при своем использовании языка. Следует ожидать поэтому, что дети раньше всего овладевают контрастами, несущими наиболее высокую функциональную нагрузку в том языке, который они слышат; соответственно, противопоставления с высокой функциональной нагрузкой, по-видимому, также лучше сохраняются при передаче языка от одного поколения к другому. Наблюдая, с какой легкостью дети овладевают контрастами своего родного языка, и изучая историческое развитие отдельных языков, мы получаем некоторое эмпирическое подтверждение этим предположениям. Впрочем, в каждом случае имеются дополнительные факторы, которые взаимодействуют с принципом функциональной нагрузки и которые трудно отделить от этого последнего. Здесь мы эти факторы рассматривать не будем.

Точная оценка функциональной нагрузки усложняется, если не становится абсолютно невозможной, из-за соображений, которые нам позволила временно не принимать во внимание оговорка «при прочих равных условиях». Во-первых, функциональная нагрузка отдельного противопоставления между элементами выражения варьирует в зависимости от структурной позиции, занимаемой ими в слове. Например, два элемента могут часто противопоставляться в начале слова, но очень редко — в конце слова. Берем ли мы просто среднюю величину для всех позиций контраста? Ответ на этот вопрос не ясен.

Во-вторых, значение отдельного противопоставления между элементами выражения не есть просто функция от числа различаемых ими слов: оно также зависит от того, могут ли эти слова встречаться и контрастировать в одном и том же контексте. Возьмем предельный случай: если А и В — два класса слов, находящихся в дополнительной дистрибуции, и каждый член класса А отличается в субстанциальной реализации от какого-то члена класса В только тем, что в нем представлен элемент /а/ там, где в соответствующем слове из В представлен элемент /b/, то функциональная нагрузка контраста между /а/ и /b/ равна нулю. Таким образом, функциональную нагрузку отдельного противопоставления следует подсчитывать для слов, имеющих одну и ту же или частично совпадающую дистрибуцию. Ясно также, что всякий «реалистический» критерий оценки значения отдельного контраста должен учитывать не просто дистрибуцию слов, устанавливаемую грамматическими правилами, но реальные высказывания, которые можно было бы перепутать, если не сохранять этот контраст. Например, как часто или в каких обстоятельствах такое высказывание, как You'd better get a cab 'Вам лучше бы взять такси', можно было бы спутать с высказыванием You'd better get a cap 'Вам бы лучше получить кепку', если бы говорящий не различал конечных согласных слов cab и cap? Ответ на этот вопрос, очевидно, существен для любой точной оценки рассматриваемого контраста.

Наконец, значение отдельного контраста, по-видимому, связано с частотой его встречаемости (которая не обязательно определяется числом различаемых им слов). Допустим, что три элемента выражения — /х/, /у/ и /z/ — встречаются в одной и той же структурной позиции в словах одного дистрибутивного класса. Но предположим далее, что тогда как слова, в которых встречаются /х/ и /у/, часто противопоставлены в языке (это высокочастотные слова), слова, в которых встречается /z/, характеризуются низкой частотой появления (хотя они могут быть столь же многочисленны в словаре). Если носитель языка не будет владеть контрастом между /х/ и /z/, общение для него будет затруднено в меньшей степени, чем в том случае, если он не будет владеть контрастом между /х/ и /y/.

Функциональная нагрузка последнего контраста, ex hypothesi, выше, чем первого.

Соображения, высказанные в предыдущих параграфах, показывают, как трудно прийти к какому-либо точному критерию оценки функциональной нагрузки. Разнообразные критерии, предложенные лингвистами до сих пор, не могут претендовать на точность, несмотря на свою математическую изощренность. Тем не менее следует предусмотреть в нашей теории языковой структуры место для понятия функциональной нагрузки, несомненно весьма важного как в синхроническом, так и в диахроническом плане. Очевидно, все же имеет смысл говорить о том, что определенные противопоставления несут более высокую функциональную нагрузку, чем какие-то другие, даже если соответствующие различия не поддаются точному измерению. 

2.4.2. КОЛИЧЕСТВО ИНФОРМАЦИИ И ВЕРОЯТНОСТЬ ПОЯВЛЕНИЯ *

Другое важное статистическое понятие связано с количеством информации, которую несет языковая единица в некотором данном контексте; оно также определяется частотой появления в этом контексте (во всяком случае, так обычно считается). Термин «информация» употребляется здесь в особом значении, которое он приобрел в теории связи и которое мы сейчас поясним. Информационное содержание отдельной единицы определяется как функция от ее вероятности. Возьмем для начала самый простой случай: если вероятности появления двух или более единиц в некотором данном контексте равны, каждая из них несет в этом контексте одно и то же количество информации. Вероятность связана с частотой следующим образом. Если две, и только две, равновероятные единицы — х и у — могут встретиться в рассматриваемом контексте, каждая из них встречается (в среднем) ровно в половине всех соответствующих случаев: вероятность каждой, a priori, равна 1/2. Обозначим вероятность отдельной единицы х через рх. Итак, в данном случае рх = 1/2 и ру = 1/2. В более общем виде вероятность каждой из n равновероятных единиц (x1, х2, х3, . . ., хn) равна 1/n. (Заметим, что сумма вероятностей всего множества единиц равна 1. Это справедливо независимо от более частного условия равной вероятности. Особым случаем вероятности является «достоверность». Вероятность появления единиц, которые не могут не появиться в данном контексте, равна 1.) Если единицы равновероятны, каждая из них несет одно и то же количество информации.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.