Е. Неискашова - Алгебра. 9 класс. 50 типовых вариантов экзаменационных работ для подготовки к ГИА
- Категория: Научные и научно-популярные книги / Математика
- Автор: Е. Неискашова
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 7
- Добавлено: 2019-02-05 10:36:12
Е. Неискашова - Алгебра. 9 класс. 50 типовых вариантов экзаменационных работ для подготовки к ГИА краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Е. Неискашова - Алгебра. 9 класс. 50 типовых вариантов экзаменационных работ для подготовки к ГИА» бесплатно полную версию:Данное пособие содержит 50 вариантов типовых экзаменационных работ.Каждый вариант составлен в полном соответствии с требованиями государственной итоговой аттестации и включает задания разных типов и уровня сложности по всем основным темам, которые выносятся на экзамен: числа, буквенные выражения, преобразования алгебраических выражений, уравнения, неравенства, последовательности и прогрессии, функции и графики.Значительный по объему банк экзаменационных материалов предоставляет отличную возможность для интенсивной тренировки и овладения необходимыми для успешной сдачи экзамена умениями и навыками.В конце книги даны ответы для самопроверки на все задания.
Е. Неискашова - Алгебра. 9 класс. 50 типовых вариантов экзаменационных работ для подготовки к ГИА читать онлайн бесплатно
Е.В. Неискашова
Алгебра: 50 типовых вариантов экзаменационных работ для подготовки к ГИА: 9 класс
Вариант 1
I часть2. Площадь территории России составляет 1,7 × 107 км2, а Австралии – 7,7 × 106 км2. Во сколько раз территория России больше территории Австралии?
1) примерно в 2,2 раза; 3) примерно в 220 раз;
2) примерно в 22 раза; 4) примерно в 4,5 раза.
3. Некоторый товар поступил в продажу по цене 450 руб. В соответствии с принятыми в магазине правилами цена товара в течение недели остается неизменной, а в первый день каждой следующей недели снижается на 10 % от текущей цены. По какой цене будет продаваться товар в течение третьей недели?
1) 405 руб.; 3) 360 руб.;
2) 364,5 руб.; 4) 90 руб.
4. За m кг сыра заплатили n руб. Составьте формулу для вычисления цены 1 кг сыра (в руб.).
5. Даны выражения:
Какие из этих выражений не имеют смысла при а = −3?
1) Только А; 3) А и В;
2) только В; 4) А, Б и В.
Ответ:___________________
7. Найдите значение выражения (2 √7)2: 14
Ответ:___________________
8. В какой многочлен можно преобразовать выражение
(а − 2)2 − 2а(а − 2)?
1) −а2 − 8а + 4;
2) −а2 + 4;
3) −а2 − 4;
4) −а2 + 8а + 4.
9. Решите уравнение 2x2 + 3x − 5 = 0.
Ответ:___________________
10. Вычислите координаты точки В.
Ответ:___________________
11. Прочитайте задачу: «Велосипедист собирался преодолеть расстояние от поселка до станции за 5 часов. Выехав из поселка, он увеличил свою скорость на 3 км/ч и проехал расстояние до станции за 4 часа. Чему равно расстояние от поселка до станции?»
Выберите уравнение, соответствующее условию задачи, если буквой x обозначено расстояние (в км) от поселка до станции.
12. Какое из приведенных ниже неравенств является верным при любых значениях а и b, удовлетворяющих условию b > а?
1) а − b > 0; 3) b − а > 3;
2) а − b < −1; 4) а − b < 2.
13. Для каждой системы неравенств укажите номер рисунка, на котором изображено множество ее решений.
14. Геометрическая прогрессия задана условиями: b1 = −2, bn + 1 = 3bn. Найдите четвертый член этой прогрессии.
Ответ:____
15. Какая из данных прямых не имеет общих точек с параболой y = x2 − 5?
1) у = 0; 2) у = 5; 3) у = −7; 4) у = −5.
16. На графиках показано, как во время телевизионной передачи телезрители голосовали в поддержку позиции одного из участников А и Б этой передачи. (По горизонтальной оси откладывается время, прошедшее с начала передачи, а по вертикальной – число голосов, поданных за это время.) Кто из участников передачи получил больше голосов в период с 15−й до 25−й минуты, и на сколько?
Ответ:____
II частьПри выполнении заданий 17–21 используйте отдельный подписанный лист. Сначала укажите номер задания, а затем запишите его решение.
17. Сократите дробь:
18. Решите систему уравнений:
19. В конечной арифметической прогрессии 20 членов, причем а1 = 2, d = 3. Найдите отношение суммы всех ее членов с четными номерами к сумме всех ее членов с нечетными номерами.
20. Найдите все значения параметра а, при каждом из которых неравенство
x2 + (2а + 6)x + 13а + 3 < 0
не имеет решений.
21. Имеются два сплава с разным содержанием золота. B первом сплаве содержится 30 %, а во втором – 50 % золота. B каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 35 % золота?
Вариант 2
I часть1. Выполните действия 28: 4 − 3 × (9 − 7).
1) 8; 2) 1; 3) −14; 4) 56.
2. Расстояние от Москвы до Пензы равно 6,45 × 102 км, а от Москвы до Амстердама – 2,325 × 103 км. Во сколько раз расстояние от Москвы до Амстердама больше, чем расстояние от Москвы до Пензы?
1) примерно в 1,5 раз; 3) примерно в 3,6 раза;
2) примерно в 36 раз; 4) примерно в 43 раза.
3. В библиотеку привезли 300 учебников. Из них 15 % составляют учебники по физике, 25 % − по математике, 30 % − по литературе, остальные учебники − по русскому языку. Сколько учебников по русскому языку привезли в библиотеку?
1) 90; 2) 45; 3) 75; 4) 210.
4. При каком из указанных х выражение
не имеет смысла?
5. По какой формуле можно рассчитать скорость автомобиля (в км/ч), если за t мин он проезжает s км?
6. Упростите выражение:
7. Вычислите (√3 + √2)2 − √24.
Ответ:_____
8. Какое из выражений тождественно равно выражению
x3 − 5x2 + 6x?
1) (x − 2)(x − 3); 3) x(x − 2)(x − 3);
2) (x + 2)(x + 3); 4) x(x + 2)(x + 3).
9. Решите уравнение:
Ответ:____
10. На рисунке изображены графики функций у = 2x + 3 и у = x2 + 4x. Вычислите абсциссу точки А.
Ответ:____
11. Прочитайте задачу: «Расстояние от поселка до города равно 45 км. Из поселка в город вышел пешеход со скоростью 5 км/ч. Через час навстречу ему из города в поселок выехал велосипедист со скоростью 15 км/ч. На каком расстоянии от поселка встретятся пешеход и велосипедист?»
Выберите уравнение, соответствующее условию задачи, если буквой x обозначено время (в ч), прошедшее с момента выхода пешехода из поселка до его встречи с велосипедистом.
12. На рисунке изображен график функции y = x2 − 5x. Используя рисунок, решите неравенство 5x > x2.
1) (0; 5); 3) (5; + ∞);
2) (− ∞; 0); 4) (− ∞; 0)U(5; + ∞).
13. Какое из приведенных ниже неравенств равносильно неравенству 3 − a < b?
1) a < b − 3; 2) 3 + b < a; 3) b − 3 < a; 4) a + b > 3.
14. Члены последовательности можно изображать точками на координатной плоскости. Для этого по горизонтальной оси откладывают номер члена, а по вертикальной – соответствующий член последовательности.
На рисунке изображены точками первые пять членов арифметической прогрессии an. Найдите a1, d.
Ответ:____
15. Для каждого графика укажите соответствующую формулу.
16. В продажу выпустили две новые модели телефонов – модель А и модель Б. На графиках показано, как эти модели продавались в течение года. (По горизонтальной оси откладывается время, прошедшее с начала продаж – в месяцах, а по вертикальной – число телефонов, проданных за это время − в тыс. шт.) Определите, телефонов какой модели было продано больше за последние два месяца, и на сколько?
Ответ:___
II частьПри выполнении заданий 17–21 используйте отдельный подписанный лист. Сначала укажите номер задания, а затем запишите его решение.
17. Постройте график функции
18. Решите уравнение
19. Найдите сумму всех двузначных натуральных чисел, кратных 7.
20. На обработку каждой детали первый рабочий затрачивает времени на 1 мин меньше, чем второй рабочий. Сколько деталей обрабатывает каждый из них за 20 мин, если известно, что первый рабочий обрабатывает за это время на 1 деталь больше, чем второй рабочий?
Вариант 3
I часть1. Одна из точек, отмеченных на числовой прямой, соответствует числу √39. Какая это точка?
1) A;
2) C;
3) D;
Жалоба
Напишите нам, и мы в срочном порядке примем меры.