Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. Страница 10

Тут можно читать бесплатно Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» бесплатно полную версию:
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. читать онлайн бесплатно

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать книгу онлайн бесплатно, автор Джон Дербишир

И еще один ключевой профессиональный термин. Бывает, что правило, на котором основано определение функции, можно применить к одним числам или к одному типу чисел, но не к другим или другому. Скажем, правило «вычесть из аргумента единицу и взять обратное число» определяет весьма уважаемую функцию — математик сказал бы, что это функция 1/(1 − x), и мы довольно плотно с ней познакомимся в главе 9.iii, — но это правило нельзя применить к аргументу 1, поскольку такая попытка повлекла бы за собой деление на нуль, чего в математике не разрешается. (Нет никакого толка спрашивать: «А что если я попробую?» Нельзя, и все. Это против правил. Если вы попытаетесь, то игра остановится и все вернется в последнюю разрешенную позицию.)

В качестве другого примера рассмотрим функцию, действующую по правилу «посчитать, сколько делителей имеет аргумент». Мы видим, что число 28 имеет шесть делителей (будем сейчас включать и тривиальные делители тоже), а 29 — только два. Значит, данная функция превращает 28 в 6, а 29 (как и любое другое простое число) в 2. Это еще одна уважаемая и полезная функция, как правило, обозначаемая как d(N). Однако эта функция осмысленна только для целых чисел — и даже только для положительных целых чисел. Сколько делителей у числа 127/8? Сколько делителей у числа π? Не спрашивайте. Эта функция — не для них.

Относящийся сюда профессиональный термин — это «область определения». Область определения какой-нибудь функции — это те числа, которые она допускает в качестве аргумента. Функция 1/(1 − x) допускает в качестве аргумента все числа, кроме 1. Функция d(N) допускает в качестве аргумента любое положительное целое число; это и есть ее область определения. Область определения функции √x — все неотрицательные числа, поскольку из отрицательных извлекать квадратный корень нельзя (впрочем, по этому поводу я оставляю за собой право передумать далее по тексту).

Некоторые функции допускают все числа в свою область определения. Функция возведения в квадрат x2, например, применима к любому числу. Любое число можно возвести в квадрат (т.е. умножить само на себя). То же верно и для полиномиальных функций (другими словами, многочленов) — т.е. функций, значения которых получаются сложением и вычитанием степеней аргумента. Примером полиномиальной функции может служить 3x5 + 11x3 35x2 7x + 4. Область определения полиномиальной функции — все числа. Это обстоятельство сыграет свою роль в главе 21.iii. Но наиболее интересные функции имеют определенные ограничения на свою область определения: или возникают какие-то значения аргумента, при которых правило не действует (обычно из-за того, что пришлось бы делить на нуль), или же правило вообще применимо только к определенному классу чисел.

Важно понимать, что табличка, подобная таблице 3.1, — это только модель функции. Сколько имеется простых чисел, меньших числа 31 556 926? Можно было бы ответить, внедряя в табличку дополнительные строки, но с учетом моего намерения удержать число страниц этой книги в некоторых разумных пределах имеется, очевидно, ограничение на то, сколько строк я могу вставить. Приведенная таблица — не более чем модель функции, ее «моментальный снимок», сделанный при определенных аргументах (выбранных с некоторым дальним прицелом).

На самом деле обычно не существует хорошего способа показать функцию во всей ее красе. Иллюстрировать какие-то конкретные свойства функции иногда помогает график, но в данном случае он достаточно бесполезен. Если вы попытаетесь изобразить содержимое таблицы 3.1 в виде графика, вы быстро поймете, что я имею в виду. Усилия по построению графика дзета-функции, которые будут предприняты в главе 9.iv, прояснят этот момент. Математики обычно получают некоторое общее представление о конкретной функции, тесно работая с ней в течение достаточно длительного времени, наблюдая при этом за всеми ее свойствами и особенностями. С помощью таблицы или графика не часто удается охватить функцию целиком.

V.

Еще о функциях надо заметить, что наиболее важные из них носят имена. А действительно важные обозначаются специальными символами. Функция, модель которой приведена в таблице 3.1, носит имя «функции числа простых чисел» и обозначается символом π(N), что читается как «пи от эн».

Знаю, знаю — может возникнуть путаница. Ведь π — это отношение длины окружности к ее диаметру, то самое невыразимое

3,14159265358979323846264….

Но новое использование символа π не имеет к этому числу ровно никакого отношения. В греческом алфавите всего 24 буквы, и к тому времени, как математики собрались дать имя этой функции (лично ответственный за это — Эдмунд Ландау, который ввел такое обозначение в 1909 году, — см. главу 14.iv), все 24 буквы уже были порядком израсходованы, и пришлось пустить их по кругу. Мне жаль, что так получилось, но это не моя вина. Данное обозначение в настоящий момент является абсолютно стандартным, так что его придется терпеть.

(Если вы хоть раз занимались мало-мальски серьезным программированием на компьютере, то вам знакома концепция перегрузки символа. Использование буквы π для двух совершенно различных целей есть некоторое подобие перегрузки этого символа.)

Итак, функция π(N) определена как число простых чисел до N (включая само N, хотя это довольно редко имеет значение, и я не буду особенно следить за употреблением выражений «меньших, чем» и «не превышающих»). Но вернемся к нашему основному вопросу: есть ли какое-нибудь правило, какая-нибудь изящная формула, которая даст нам значение π(N), избавив от необходимости заниматься счетом?

Позвольте мне устроить небольшой фокус с таблицей 3.1. Я поделю первую колонку на вторую — аргументы на значения. Я не гонюсь за безумной точностью. И вообще буду пользоваться карманным калькулятором за 6 долларов, с которым я хожу в супермаркет. Вот что получается: 100 разделить на 168 даст 5,9524; 1 000 000 разделить на 78 498 даст 12,7392. Еще четыре результата подобного же вычисления дают нам таблицу 3.2.

N N/π(N) 1 000 5,9524 1 000 000 12,7392 1 000 000 000 19,6665 1 000 000 000 000 26,5901 1 000 000 000 000 000 33,5069 1 000 000 000 000 000 000 40,4204

Таблица 3.2.

Посмотрим пристально на эти значения. Они всякий раз возрастают на 7. Точнее, на число, которое болтается между 6,8 и 7,0. Может, вам это и не кажется чем-то особенно чудесным, но когда математик видит такую таблицу, над головой у него ярко вспыхивает лампочка и определенное слово приходит ему на ум. Позвольте объяснить.

VI.

Имеется определенное семейство функций, которые страшно важны в математике, — показательные функции. Не исключено, что вы о них кое-что знаете. Их еще называют «экспоненциальными», и это слово проникло из математики в обычный язык. Мы все надеемся, что наши деньги, вложенные в инвестиционные фонды, будут расти экспоненциально — другими словами, быстрее и быстрее.

С принятой нами точки зрения — иллюстрирования функций двухколоночными таблицами типа таблицы 3.1 — можно нестрого определить показательную функцию следующим образом. Если взять набор значений аргумента так, чтобы при переходе от строки к строке они росли как результат регулярного сложения, и если при этом окажется, что получающиеся значения функции растут как результат регулярного умножения, то перед нами — показательная функция. Слово «регулярный» здесь означает, что происходит прибавление одного и того же числа или умножение на одно и то же число.

Рассмотрим пример. Возьмем правило «вычислить 5×5×5×5×… — выражение, содержащее N пятерок».

N 5N 1 5 2 25 3 125 4 635

Видите, как аргумент каждый раз увеличивается путем прибавления 1, в то время как значения каждый раз увеличиваются путем умножения на 5? Это показательная функция. Аргументы увеличиваются «по сложению», а значения — «по умножению».

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.