Роза Мария Рос - Мир математики. т.30. Музыка сфер. Астрономия и математика Страница 11

Тут можно читать бесплатно Роза Мария Рос - Мир математики. т.30. Музыка сфер. Астрономия и математика. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Роза Мария Рос - Мир математики. т.30. Музыка сфер. Астрономия и математика

Роза Мария Рос - Мир математики. т.30. Музыка сфер. Астрономия и математика краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Роза Мария Рос - Мир математики. т.30. Музыка сфер. Астрономия и математика» бесплатно полную версию:
Астрономия — это целый мир, полный прекрасных образов. Эта удивительная наука помогает найти ответы на важнейшие вопросы нашего бытия: узнать об устройстве Вселенной и ее прошлом, о Солнечной системе, о том, каким образом вращается Земля, и о многом другом. Между астрономией и математикой существует особая связь, ведь астрономические прогнозы являются результатом строгих расчетов. По сути, многие задачи астрономии стало возможным решить благодаря развитию новых разделов математики.Из этой книги читатель узнает о том, каким образом измеряется положение небесных тел и расстояние между ними, а также об астрономических явлениях, во время которых космические объекты занимают особое положение в пространстве.

Роза Мария Рос - Мир математики. т.30. Музыка сфер. Астрономия и математика читать онлайн бесплатно

Роза Мария Рос - Мир математики. т.30. Музыка сфер. Астрономия и математика - читать книгу онлайн бесплатно, автор Роза Мария Рос

Многие экзопланеты находятся ближе к звездам своих планетных систем, чем Меркурий — к Солнцу. Это означает, что температура их поверхности очень высока.

Во внутренней части Солнечной системы находятся небольшие скалистые планеты, а первый газовый гигант, Юпитер, отдален от Солнца на расстояние 5,2 а. е. Внесолнечные планеты чаще всего имеют очень большие размеры и находятся намного ближе к своим звездам. Считается, что обнаруживаемые различия между планетами этих типов обусловлены методами наблюдений. Так, метод радиальных скоростей, который используется для обнаружения экзопланет, позволяет найти более мелкие и массивные планеты. Однако можно предположить, что орбиты большинства экзопланет намного больше и что в большинстве планетных систем есть одна или две планеты-гиганта, орбиты которых сравнимы с орбитами Юпитера и Сатурна.

Какова вероятность того, что на экзопланетах есть жизнь? Приблизительные расчеты показывают, что обитаемая область Солнечной системы, где возможно существование жидкой воды (иными словами, температура поверхности заключена на интервале от 0 до 100 °C), простирается от 0,56 до 1,04 а.е. Внутренняя граница этой области пролегает между орбитами Меркурия и Венеры, внешняя граница — сразу за орбитой Земли. Таким образом, внутри этой области (выделена серым цветом на иллюстрации на следующей странице) располагаются лишь две планеты, Венера и Земля. Вследствие сильного парникового эффекта температура на Венере слишком высока для зарождения жизни. Из всех известных сегодня экзопланет можно говорить только об одной экзопланете земного типа — Глизе 581 d, которая вращается в обитаемой области своей звезды и, вероятно, стала домом для внеземной цивилизации. Возможно, в обитаемой области своей планетной системы находится и Глизе 581 с. На этой планете, вероятно, находится вода, однако, согласно некоторым исследованиям, парниковый эффект там такой же сильный, как и на Венере.

Многие вопросы о свойствах и характеристиках экзопланет пока остаются без ответов. К поиску экзопланет постепенно подключаются астрономы-любители. Для решения этой задачи необходимо множество астрономических наблюдений, а профессиональные телескопы крайне загружены, и в этих условиях сотрудничество астрономов-любителей и профессионалов может дать прекрасные результаты, как это было при изучении переменных звезд.

Обитаемая зона нашей Солнечной системы и других планетных систем, где возможно существование жизни.

Глава 3. Затмения и транзиты планет: место встречи

В древние времена полные солнечные затмения считались зловещим предзнаменованием. Люди верили, что судьба мира зависит от вечных и божественных звезд, и внезапное исчезновение важнейшей из них было равносильно концу света. Постепенно эти верования отошли в прошлое, однако затмения по-прежнему оставались крайне любопытным явлением.

Затмения помогали определить соотношения расстояний между небесными телами. Как мы уже упоминали, Аристарх Самосский именно во время лунного затмения определил расстояния между Землей, Луной и Солнцем. В свое время расстояния между планетами Солнечной системы удалось определить при прохождении Венеры по диску Солнца. Затмения помогли людям достичь новых вершин научного знания и совершить множество открытий. Это явление, по сути, не более чем частный случай математической задачи сферической астрономии.

Геометрия затмений

Обычному человеку непросто понять, как именно располагаются Земля, Луна и Солнце во время затмений, и в новостях поэтому часто проскальзывают досадные ошибки. К примеру, очевидно, что солнечные затмения всегда происходят в новолуние, лунные затмения — в полнолуние, однако тем, кто несведущ в астрономии, непросто ответить на вопрос: каким образом солнечные затмения связаны с фазами Луны? Также таким людям сложно понять, почему лунные затмения наблюдаются намного чаще, чем солнечные. Попробуем дать простые ответы на эти вопросы.

На следующей иллюстрации представлены фазы Луны. Лунное затмение наблюдается при попадании Луны в коническую тень Земли. При этом Солнце, Земля и Луна располагаются так, как показано на иллюстрации ниже. Поскольку коническая тень Земли больше, чем Луна, лунные затмения происходят сравнительно часто. Очевидно, что лунное затмение может наблюдаться только при полной Луне, так как Земля должна располагаться на прямой линии между Солнцем и Луной.

При вращении Луны вокруг Земли половина Луны всегда освещена (обратите внимание на маленькие изображения Луны под номерами 1, 2, 3 и 4), однако при наблюдении с Земли Луна выглядит иначе — так, как показано на внешней окружности на иллюстрации.

В положении 1 мы видим Луну в первой четверти, в положении 2 — полную Луну, в положении 3 — последнюю четверть, в положении 4, то есть в новолуние, Луна не видна — она не отражает солнечные лучи в сторону Земли.

Схема лунного затмения. Лунное затмение происходит в полнолуние.

Фотографии лунного затмения, наложенные друг на друга: вы видите, как спутник Земли пересекает тень планеты.

Солнечное затмение происходит, когда Луна расположена между Солнцем и Землей, то есть в положении 4 на иллюстрации на предыдущей странице. Солнечные затмения, в отличие от лунных, можно увидеть только из конкретных областей земной поверхности, и наблюдаются они реже, чем лунные. Если лунные затмения можно наблюдать почти каждый год, то чтобы увидеть солнечное затмение, придется ждать много лет.

Схема солнечного затмения. Солнечное затмение происходит в новолуние.

Как видно на иллюстрации, Земля находится на одной линии с Солнцем и Луной, и Луна расположена посредине. Таким образом, солнечное затмение происходит в новолуние.

Словом, лунные затмения — гораздо более частое явление, чем солнечные.

На этой фотографии солнечного затмения 1999 года, сделанной с Международной космической станции, четко видна тень Луны на поверхности Земли.

Читатель может подумать, что в полнолуние всякий раз происходит лунное затмение, а при каждом новолунии — солнечное. Однако в действительности все обстоит иначе. Причина в том, что орбита Луны наклонена на 5° относительно плоскости эклиптики, поэтому затмения наблюдаются только тогда, когда Луна находится вблизи линии узлов — линии пересечения плоскости, в которой вращается Земля вокруг Солнца, и плоскости, в которой вращается Луна относительно Земли.

Линия узлов — линия пересечения плоскости, в которой Луна вращается вокруг Земли, и плоскости эклиптики (плоскости, в которой Земля движется вокруг Солнца). Затмения могут наблюдаться, только когда Луна располагается вблизи линии узлов, то есть достаточно близко к плоскости, чтобы диск Луны оказался полностью перекрыт тенью Земли.

Области тени и полутени

При любом затмении можно геометрически определить две затененные области: область полной тени и область полутени.

Внешние касательные ограничивают область тени, внешние и внутренние касательные — области полутени. Полные затмения наблюдаются, когда Луна целиком находится в области тени. Если же Луна находится в области тени частично, говорят о неполном затмении.

Земная и лунная орбиты представляют собой эллипсы с малым эксцентриситетом. Следовательно, относительные расстояния между Солнцем, Землей и Луной не всегда будут одинаковыми (как это было бы при концентрических орбитах), поэтому иногда Луна не перекрывает Солнце полностью. Таким образом, различают полные и кольцевые затмения, когда вокруг Луны можно видеть кольцо солнечного сияния.

В зависимости от расстояния, на котором находится Луна, могут наблюдаться полные или кольцевые затмения.

* * *

МОДЕЛЬ «ЗЕМЛЯ-ЛУНА»

Чтобы читатель смог лучше разобраться в фазах луны и затмениях, предлагаем ему изготовить очень простую модель. Нужно вбить в доску длиной примерно 125 см два гвоздя длиной 3 или 4 см. Расстояние между гвоздями должно составлять 120 см. На шляпку каждого гвоздя приклейте пенопластовые шарики диаметром 4 и 1 см, которые будут обозначать Землю и Луну соответственно. Если вы соблюдете указанные размеры, то получите точную модель Земли и Луны в масштабе 1:320000.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.