Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания Страница 12
- Категория: Научные и научно-популярные книги / Математика
- Автор: Марио Ливио
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 64
- Добавлено: 2019-02-05 10:36:43
Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания» бесплатно полную версию:Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.
Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания читать онлайн бесплатно
Колосс Родосский, что медью сверкает на солнце,
Статую Зевса, что Фидий божественный создал,
И, наконец, маяк, воздвигнутый в Александрии,
Или же Кира чертог, чистым золотом запечатленный.
Неизвестный автор. Семь чудес древнего мираНазвание этой главы позаимствовано из «Посвящения Шекспиру» великого английского поэта Джона Мильтона (1608–1674). Мильтон, которого считали вторым по гениальности поэтом после Шекспира, писал:
Нуждается ль, покинув этот мир,В труде каменотесов мой Шекспир,Чтоб в пирамиде, к звездам обращенной,Таился прах, веками освещенный?
(Пер. С. Маршака)Как мы вскоре убедимся, пирамиды и в самом деле ориентировали по звездам. Однако многим писателям, похоже, оказалось мало того, что эти сооружения сами по себе столь грандиозны: они настаивают, что параметры великих пирамид основаны на золотом сечении. Для всех поклонников золотого сечения подобная связь лишь добавляет загадочности, которая в целом свойственна числу φ. Но правда ли это? Знали ли древние египтяне о числе φ – и если да, сознательно ли они обессмертили его, создав на его основе одно из Семи чудес света?
Если учесть, что первоначально интерес к золотому сечению вспыхнул, вероятно, из-за его связи с пентаграммой, нам сперва придется проследить историю пентаграммы с самого начала, поскольку это приведет нас к самым первым появлениям золотого сечения на исторической арене.
Попросите любого ребенка нарисовать звездочку – и он, скорее всего, нацарапает пентаграмму. На самом деле это следствие того, что звезды мы видим сквозь атмосферу Земли. Движение воздуха рассеивает звездный свет, и кажется, что звезды постоянно меняют очертания – вот почему они мерцают. Люди хотели передать лучики, которые видятся нам в результате мерцания, и нарисовали пентаграмму, у которой есть и еще одна привлекательная черта – ее можно начертить, не отрывая инструмента для письма от глины, папируса или бумаги.
Шли годы, и подобные «звезды» стали символом качества (вспомним пятизвездочные отели, кинофильмы и рецензии на книги), достижений (кино– и телезвезды), способностей («хватает с неба звезды») и авторитета (воинские знаки отличия). А если вспомнить, что эта символика сочетается с романтическим очарованием звездной ночи, неудивительно, что пятиконечные звезды украшают флаги более шестидесяти государств и что подобный рисунок встречается на бесчисленном множестве фирменных логотипов – от «Тексако» до «Крайслера».
Некоторые из первых дошедших до нас пентаграмм относятся к IV тысячелетию до нашей эры и найдены в Междуречье. Изображения пентаграмм были обнаружены при раскопках города Урук, где также были обнаружены и первые памятники письменности, и в Джемдет-Насре. Древний вавилонский город Урук – это, вероятно, библейский Эрех, упоминаемый в Книге Бытия (глава 10) как один из городов во владениях «сильного зверолова» Нимрода. Пентаграмма обнаружена на глиняной табличке, датируемой примерно 3200 г. до н. э. В Джемдет-Насре пентаграммы примерно того же периода были обнаружены на вазе и на пряслице. В шумерской культуре пентаграмма или ее клинописный вариант означали «все края Вселенной». Пентаграммы рисовали и в других частях древнего Ближнего Востока. В Тель-Эсдаре в израильской пустыне Негев нашли пентаграмму на кремневом скребке эпохи халколита («Медного века», 4500–3100 до н. э.). В Израиле пентаграммы обнаруживали и в других местах – при раскопках в Гезере и Тель-Захария, – однако они датируются существенно более поздним временем (V в. до н. э.). Несмотря на то что пятиконечные звезды довольно часто встречаются на древнеегипетских артефактах, геометрически правильные пентаграммы распространены не слишком сильно, хотя на кувшине в Накаде близ Фив обнаружена пентаграмма, относящаяся примерно к 3100 г. до н. э. В целом иероглифический символ звезды, вписанной в круг, означал «подземный мир» или мифическое место пребывания звезд в сумерки, а звезды без кругов служили просто обозначением ночных светил.
Однако главный вопрос, на который нам нужно ответить в контексте этой книги, состоит не в том, придавали ли ранние цивилизации какое-либо символическое или мистическое значение пентаграммам и правильным пятиугольникам, а в том, осознавали ли эти цивилизации особые геометрические свойства этих фигур, а в особенности – золотое сечение.
В те дни, как не был прахом Вавилон[3]
Исследования клинописных табличек, датируемых II тысячелетием до н. э. и найденных в 1936 году в Сузах в Иране, практически не оставляют сомнений, что вавилоняне времен первой династии знали формулу, позволяющую хотя бы приблизительно вычислить площадь правильного пятиугольника. Интерес вавилонян к пятиугольнику, вероятно, объяснялся тем простым фактом, что это фигура, которая получается, если прижать к глиняной табличке кончики всех пяти пальцев. На одной табличке из Суз мы читаем: «1 40, постоянная пятисторонней фигуры». Поскольку у вавилонян была принята шестидесятеричная система счисления, числа 1 40 следует толковать как 1 + 40/60, то есть площадь правильного пятиугольника со стороной 1 равна 1,666… На самом деле площадь правильного пятиугольника со стороной 1 не так уж далека от этой величины – 1,720. Вавилоняне вычислили подобное приближенное значение и для числа π – отношения длины окружности к диаметру. По сути дела, вычисление приближенного значения и числа π, и площади правильного пятиугольника опирается на одно и то же соотношение. Вавилоняне предположили, что периметр любого правильного многоугольника (фигуры с любым количеством равных сторон и равных углов) равен радиусу окружности, в которую вписан этот многоугольник, умноженному на 6 (рис. 12). На самом деле это совершенно справедливо для правильного шестиугольника (он и изображен на рис. 12), поскольку все шесть треугольников, из которых он состоит, равнобедренные. Согласно вычислениям вавилонян, число π равнялось 3 + 1/8, то есть 3,125. И правда, очень неплохое приближение, ведь значение числа π составляет 3,14159… Для правильного пятиугольника неточное предположение, что «периметр равен шести радиусам», дает приблизительное значение площади в 1,666… – то есть тот самый коэффициент, который мы видим на табличке из Суз.
Рис. 12
Рис. 13
Несмотря на эти важные ранние открытия в математике и на теснейшую связь системы пентаграммы-пятиугольника и золотого сечения, нет ни малейших математических свидетельств, что вавилоняне знали о золотом сечении. Тем не менее, в некоторых книгах и статьях утверждается, что золотое сечение будто бы наблюдается в пропорциях ассиро-вавилонских стел и барельефов. Например, в увлекательной книге Майкла Шнайдера «Конструирование Вселенной. Руководство для начинающих» (Michael Schneider. A Beginner’s Guide to Constructing the Universe) утверждается, что вавилонская стела (рис. 13) с изображением жрецов, которые ведут инициируемого на «встречу» с богом Солнца, «во многих отношениях связана с золотым сечением». А в статье, опубликованной в 1976 году в журнале «The Fibonacci Quarterly», искусствовед Хелен Хедиан пишет, что барельеф ассирийского крылатого полубога, созданный в IX в. до н. э. (в настоящее время он хранится в музее Метрополитен в Нью-Йорке) идеально вписывается в прямоугольник с соотношением сторон, соответствующим золотому сечению. Более того, Хедиан предполагает, что четкие контуры крыльев, ног и клюва также построены в соответствии с долями числа φ. Нечто подобное Хедиан говорит и о вавилонской «Умирающей львице» из Ниневии, которую датируют примерно 600 г. до н. э. и которая сейчас хранится в Британском музее в Лондоне.
Так можно ли сказать, что при создании всех этих артефактов из Междуречья действительно было использовано золотое сечение, или это просто научное заблуждение?
Чтобы ответить на этот вопрос, нам придется ввести какие-то критерии, которые позволят определить, истинны или ложны те или иные заявления о появлении золотого сечения. Очевидно, что присутствие золотого сечения можно доказать безо всяких сомнений лишь в том случае, если сохранилась какая-то документация, из которой следует, что художники или архитекторы сознательно прибегали к этому соотношению. К несчастью, вавилонские таблички и барельефы никакой подобной документацией не подкрепляются.
Разумеется, преданный поклонник золотого сечения возразит на это, что отсутствие доказательств не есть доказательство отсутствия, и что достаточным подтверждением применения золотого сечения могут стать параметры произведения искусства сами по себе. Однако, как мы вскоре увидим, попытки найти золотое сечение в параметрах предметов – затея, которая ни к чему хорошему не приводит. Позвольте подтвердить это простым примером. На рис. 14 приведен чертеж маленького телевизора, который стоит у меня в кухне. На чертеже указаны некоторые измерения – их я сделал сам. Легко видеть, что соотношение толщины и высоты задней части телевизора равно 10,6/6,5 дюймов, то есть 1,63, а соотношение ширины передней части и высоты экрана 14/8,75 = 1,6, то есть оба эти соотношения, несомненно, очень близки к золотому сечению – 1,618…. Означает ли это, что изготовители телевизора решили выстроить его архитектуру в соответствии с золотым сечением? Ясно, что нет. Это пример просто показывает две главные ошибки тех, кто ищет золотое сечение в архитектуре или в произведениях искусства на основании одних размеров: (1) подсчеты всегда несколько натянуты, а (2) неточность измерений не учитываются. Каждый раз, измеряя параметры какой-то относительно сложной структуры (картины, стелы, телевизора), вы получаете в свое распоряжение большой набор длин – есть из чего выбрать. И есть чем пренебречь – можно не обращать внимания на остальные детали изучаемого предмета, так что нужно лишь набраться терпения и по-всякому играть и манипулировать числами, и тогда обязательно найдется какая-нибудь интересная комбинация. Вот и я, исследуя телевизор, «открыл» некоторые измерения, отношения которых близки к золотому сечению.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.