Борис Бирюков - Жар холодных числ и пафос бесстрастной логики Страница 14

Тут можно читать бесплатно Борис Бирюков - Жар холодных числ и пафос бесстрастной логики. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Борис Бирюков - Жар холодных числ и пафос бесстрастной логики краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Борис Бирюков - Жар холодных числ и пафос бесстрастной логики» бесплатно полную версию:
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.

Борис Бирюков - Жар холодных числ и пафос бесстрастной логики читать онлайн бесплатно

Борис Бирюков - Жар холодных числ и пафос бесстрастной логики - читать книгу онлайн бесплатно, автор Борис Бирюков

Наконец, нетрудно проверить (эту проверку мы предоставляем читателю), что, действуя по нашим правилам вывода, мы из верного равенства всегда будем выводить верное же равенство.

В силу оказанного мы можем мыслить задаваемый нашим исчислением процесс порождения верных равенств. В этом процессе участвуют схемы аксиом, каждая из которых порождает бесконечно много верных равенств, и правила [b], при каждом применении! которых к верным равенствам порождается верное равенство. Как конкретно проходит подобный процесс порождения, мы покажем в связи со следующей интерпретацией — логической.

Логическая интерпретация (на высказываниях)

Будем понимать под высказыванием выражение некоторого языка (безразлично какого —естественного, например русского, или какого-либо искусственного, например алгоритмического, применяемого в программировании! ЭВМ), которое либо истинно, либо ложно (и не может быть тем и другим одновременно). Назовем истинность («истинно») и ложность («ложно») истинностными значениями высказываний. Будем считать, что на место пропозициональных переменных в формулы подставляются высказываний при этом если подставляется высказывание, обладающее истинностным значением «истинно» (соответственно «ложно»), то его же принимает и та пропорциональная переменная, на место которой подставлено данное высказывание.

Связки определим так же, как и в первой интерпретации, только вместо 1 в таблицах будем вписывать букву «и» («истинно»), а вместо 0 — «л» («ложно»). Тогда операция ~ окажется операцией обычного отрицания высказываний, формула ~α походит в истинное высказывание, если а при данной подстановке истинностных значений вместо всех своих переменных переходит в ложное высказывание, и в ложное высказывание, если а переходит в истинное высказывание[15]; операция & (конъюнкция) окажется соответствующей логическому союзу «и» и будет порождать истинное высказывание вида (α & β) тогда, и только тогда, когда а и β истинны (то есть интерпретируются истинными высказываниями); операция V будет соответствовать слабой дизъюнкции, то есть соединительно-разделительному союзу «или» естественного языка: формула (а V β) принимает значение «истинно» тогда, когда хотя бы одна из двух формул, а, β, переходит в истинное высказывание. Что касается введенных по определению знаков → и ≡, то первый из них соответствует логическому союзу «если..., то» (логическая операция импликация), а второй — союзу «если, и только если,..., то» (или «тогда, и только тогда, когда») (логическая операция эквиваленция).

Нетрудно убедиться, что (α → β) переходит в ложное высказывание, когда а (посылка, или антецедент, импликативного выражения) принимает значение «истинно», а β (заключение, или консеквент) — значение «ложно», в остальных же случаях импликативное выражение истинно; эквивалентность (а ≡ β) переходит в истинное высказывание в том, и только том, случае, когда а и β принимают одно и то же истинностное значение[16].

При данной интерпретации каждая формула оказывается формой высказывания, или пропозициональной формой, то есть выражением, переходящим в высказывание (истинностное значение) при подстановке каких-то высказываний (истинностных значений) вместо всех ее пропозициональных переменных. Значение такой формы для всех возможных подстановок такого рода задается таблицей истинности, которая строится по данной формуле. Так, форме (~A1 & (A2 V ~A1)) соответствует следующая таблица (табл. 9; ср. табл. 6). В табл. 9 мы опустили промежуточные колонки, которые необходимы для того, чтобы получить ее правую колонку (они получаются из табл. 6 заменой «1» на «и», а «0» на «л» в колонках для формул ~А1 и (A2 V ~A1)).

Формулам, тождественно-равным единице (в предшествующей интерпретации), здесь соответствуют формы высказываний, принимающие значение «истинно» при любых значениях своих пропозициональных переменных (их называют тождественно-истинными формами высказываний или просто тождественно-истинными высказываниями); любая из таких форм может считаться интерпретацией константы 1. Формулам же, которые в предшествующей интерпретации были тождественно-равными нулю, теперь соответствуют тождественно-ложные высказывания (тождественно-ложные формы высказываний), и любое из таких высказываний есть интерпретация константы 0.

Равенство двух формул означает утверждение, что справа и слева от знака равенства стоят формы высказываний, принимающие одно и то же истинностное значение при любых значениях входящих в них пропозициональных переменных (равносильные формы высказываний); если это утверждение справедливо, то данное равенство 5 следует признать верным, в противном случае оно неверно.

В данной интерпретации особую роль играют тождественно-истинные высказывания. Некоторые из них выражают фундаментальные закономерности мышления. Таковы, в частности, формы высказываний ~(а & ~а) и (а V ~а) которые выражают логические законы, называемые соответственно законом противоречия и законом исключенного третьего (импликативное выражение (а → а) соответствует закону тождества)[17]. Тождественно-истинные высказывания используются для определения важного понятия логического следования. Поясним это понятие.

Среди объектов, фигурировавших при построении нашей формальной системы, смысл логического следования ближе всего передает импликация. В самом деле, когда утверждается «Из α логически следует β», имеют в виду, что не может быть, чтобы α было верно, а β неверно, то есть «Если α, то (обязательно) β». Говоря точнее, логическое следование означает, что какие бы значения ни принимали пропозициональные переменные в посылке α и заключении β, всегда верно, что «если α, то β», то есть, что форма (~α V β) —по определению записываемая импликативным выражением (α → β) — тождественно-истинна. Отсюда получается метод определения следования заключения из посылок: надо образовать импликативное выражение, в котором антецедентом является посылка (или конъюнкция посылок, если их несколько), выраженная в виде формы высказывания, а консеквентом — предполагаемое заключение, также представленное в виде формы; если полученное импликативное выражение тождественно-истинно, то предполагаемое заключение действительно является таковым, то есть логически следует из посылки (посылок), в противном случае —не является.

Покажем, как удостоверяется следование заключения из посылок на уже знакомом нам примере силлогистического модуса Celarent. Представим посылку «Ни одно B не есть С» в виде «Если А1 то не-A2» то есть (A1 → ~А2), что является сокращением для формы (~А1 V ~\А2) здесь А1 и ~A2 суть пропозициональные формы, соответствующие выражениям «Нечто принадлежит классу В» и «Нечто принадлежит классу не-С (то есть дополнению к классу С)» в высказывании «Если нечто принадлежит классу B, то оно принадлежит классу не-С», которое можно считать совпадающим по смыслу с данной посылкой. Посылку «Все A суть B», используя тот же прием, запишем в виде (А3 → А1) заключение «Ни одно A не есть С» перейдет тогда в (A3 → ~А2). Образуем импликативное выражение (((A1 → ~A2) & (А3 → А1)) → (А3 → ~А2)) и проверим с помощью таблиц истинности, является ли это выражение тождественно-истинным. Табл. 10 показывает, что оно будет таковым.

Пользование таблицами истинности для определения следования заключения из посылок, однако, весьма громоздко. При четырех пропозициональных переменных таблица будет иметь 16 строк, при пяти — 32 строки и т. д. Поэтому в логике разработаны методы аналитического обоснования следования заключения из посылок — путем преобразования формул. В нашем примере обращение к одному из аналитических методов будет выглядеть так (над знаками равенства проставлены номера шагов в получившейся цепочке равенств; наружные скобки в формулах, подвергающихся преобразованиям, опущены).

Прокомментируем каждый из тринадцати шагов, а затем подвергнем анализу результат преобразования. На шагах (1), (2) и (3) используется определение знака импликации как средства сокращенной записи формул (п. V на с. 57). В результате исследуемое импликативное выражение переходит в формулу нашего исчисления. На шаге (4) применяется первый закон Де Моргана, а на шаге (5) дважды — второй закон Де Моргана. Шаг (6) заключается в снятии двойных отрицаний. Далее, на шаге (7) происходит раскрытие скобок — применяется закон дистрибутивности дизъюнкции относительно конъюнкции. На шаге (8) по закону коммутативности дизъюнкции происходит перестановка членов в формулах ((A1 & А2) V A3) и ((A1 & A2) V ~A1)

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.