Эмилия Александрова - Искатели необычайных автографов Страница 19

Тут можно читать бесплатно Эмилия Александрова - Искатели необычайных автографов. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Эмилия Александрова - Искатели необычайных автографов

Эмилия Александрова - Искатели необычайных автографов краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Эмилия Александрова - Искатели необычайных автографов» бесплатно полную версию:
Любитель изящной словесности Филарет Филаретович Филаретов, или сокращенно Фило, и признающий только красоту математики Матвей Матвеевич Матвеев, или сокращенно Мате, отправляются в путешествие по прошедшим эпохам в поисках автографов великих писателей и математиков. Каково же их удивление, когда оказывается, что они разыскивают одних и тех же людей! На страницах этой удивительной книги вы повстречаетесь с Омаром Хайямом, Блезом Паскалем, Эратосфеном, Фибоначчи, Пифагором и многими другими великими людьми, которые, возможно, предстанут в новом, незнакомом для вас качестве. Немаловажно, что книга написана простым понятным языком и не требует специальных знаний в области математики.

Эмилия Александрова - Искатели необычайных автографов читать онлайн бесплатно

Эмилия Александрова - Искатели необычайных автографов - читать книгу онлайн бесплатно, автор Эмилия Александрова

— Не знаю, но если вы будете столь любезны…

— Буду, буду, — великодушно заверил Мате. — Эратосфен писал числа на дощечке, покрытой слоем воска. При этом составные числа он не зачеркивал, а протыкал острой палочкой. И вскоре дощечка и впрямь начинала походить на решето.

— Вероятно, решето все-таки не единственное изобретение Эратосфена? — тактично полюбопытствовал Фило.

Вместо ответа Мате вышел в прихожую, порылся в рюкзаке и принес какой-то странный прибор. Осмотрев его, Фило высказал предположение, что Эратосфен питал пристрастие к домашнему хозяйству: сперва изобрел решето, потом — подставку для чайника.

Он приподнял чайник, обнажив лежащую под ним складную металлическую гармошку. Мате подтвердил, что некоторое сходство действительно имеется, но весь фокус в том, что с помощью прибора Эратосфена решалась одна из знаменитых задач древности, тогда как подставка на это решительно не способна.

— Любезный Дон-Кихот, — вкрадчиво попросил Фило, — просветите вашего верного Санчо. О каких знаменитых задачах речь?

Мате посмотрел на друга с досадой и в то же время с тайной гордостью. Право же, любопытство его становится угрожающим!

— А кто выпустил джинна из бутылки? — парировал Фило. — Не вы ли? Вот и расхлебывайте.

Мате махнул рукой.

— Так и быть! С таким чаем расхлебывать не страшно.

— Ага! — просиял Фило. — Я знал, что против моего чая вы не устоите!

ДЕЛИЙСКАЯ ЗАДАЧА

— Нам известны три неразрешимые задачи древности, — начал Мате, — квадратура круга, трисекция угла и удвоение куба…

— Почему же неразрешимые! — с ходу перебил Фило. — Вы же сами только что сказали, что Эратосфен решил одну из них посредством своего замысловатого прибора.

— Решить-то решил, но незаконно. Потому что по условию при решении этих задач можно было пользоваться только двумя простейшими приспособлениями: линейкой без делений и циркулем.

— Что за глупое условие! — фыркнул Фило. — Не все ли равно, каким способом решать? Главное — добиться правильного ответа.

— Ошибаетесь, уважаемый Санчо. Решить задачу, ничего не вычисляя, манипулируя только линейкой и циркулем, — большое искусство, требующее изобретательности, остроумия, я бы даже сказал — таланта. Недаром задачам на построение уделяется на уроках геометрии особое внимание! Представьте себе: вам даны три отрезка, которые должны стать медианами некоего треугольника. Попробуйте построить этот треугольник, не прибегая ни к чему, кроме слепой линейки и циркуля.

— Увы! — безнадежно вздохнул Фило. — Для этого надо знать геометрию.

— Золотые слова, хоть и не новые. Нечто подобное сказал Платон еще в четвертом веке до нашей эры. На фронтоне его афинской академии было начертано: «Не знающий геометрии да не входит сюда!» И вот почему именно к Платону обратились за помощью делийцы, когда произошла история с удвоением куба.

— Вас не поймешь, — рассердился Фило. — То вы говорили, что удвоение куба — задача, теперь это уже история…

Но Мате попросил его не придираться к словам: удвоение куба, как и всякая задача, имеет свою историю.

В IV веке до нашей эры на острове Делос в городе Дельфах вспыхнула эпидемия чумы. Что в таких случаях думают древние люди? Они думают, что прогневили богов и, естественно, стараются узнать, каким образом их умилостивить. А посему делийцы обратились за советом к знаменитому дельфийскому оракулу, и тот изрек им волю небожителей: бедствие прекратится тогда, когда в дельфийском храме будет воздвигнут новый жертвенник, объемом ровно вдвое больше прежнего, причем форма жертвенника — куб — должна оставаться неизменной.

Ознакомившись с задачей, Платон якобы сказал, что боги задали ее делийцам не потому, что им не нравится прежний жертвенник, а в укор и назидание грекам, которые мало думают о математике и пренебрегают геометрией.

— Стало быть, задача показалась ему очень трудной, — заключил Фило. — Но почему? Увеличьте ребро куба в два раза — вот вам и удвоение!

Мате сказал, что решение поистине царское, и Фило задрал было нос, но выяснилось, что таким образом пытался решить задачу об удвоении куба критский царь Минос. При этом объем получился у него не в два, а в восемь раз больше прежнего, ибо объем куба равен кубу его ребра, а два в кубе как будто восемь…

Фило, разумеется, сразу сник, но тут же сообразил, что длину ребра можно найти и другим способом. Допустим, объем прежнего куба равен единице. Тогда объем нового должен быть равен двум. Значит, извлеките корень кубический из двух, и дело в шляпе.

На сей раз Мате признал, что Фило рассуждает правильно, но вот беда: извлечь корень кубический из двух можно только приближенно. Ведь это число иррациональное, иначе говоря, несоизмеримое с единицей!

— Ничего, — не сдавался Фило, — можно небось подобрать и такую длину ребра, чтобы корень извлекался. Пусть, например, ребро куба равно двум. Тогда объем будет равен восьми, а удвоенный объем — шестнадцати. Извлечем корень кубический из шестнадцати…

— И снова получим иррациональное число. Ведь что такое шестнадцать? Это восемь умноженное на два. Из восьми корень кубический извлекается, а из двух — нет. А так как при удвоении множитель два под корнем неизбежен, значит, подобрать длину ребра, которая была бы числом рациональным, нельзя:

— Странно, странно и в третий раз странно. Выходит, удвоение куба вообще невозможно?

— Невозможно с помощью слепой линейки и циркуля. Но есть в геометрии и другие способы. Вместо того чтобы извлекать корень, который нельзя вычислить точно, можно найти длину ребра непосредственно на чертеже. Именно так и поступали древние греки. А так как работа эта достаточно кропотлива, Эратосфен решил упростить ее и придумал прибор, который находит длину ребра чисто механически.

— Платон, наверное, сказал бы, что Эратосфен сплутовал, — добродушно предположил Фило.

— Это вы хорошо заметили, — похвалил Мате. — Эратосфен тоже был убежден, что Платон бы его по головке не погладил.

— Откуда вы знаете?

— От самого Эратосфена. Он написал сочинение «Платоник», где немалое место занимает задача об удвоении куба. Способы решения ее обсуждают греческие математики Архит, Менехм, Эвдокс и, конечно, сам Платон. И когда заходит речь о применении механического прибора, Эратосфен, искусно подделываясь под стиль Платона, заставляет его высказать отрицательное отношение к подобному способу.

— Знаете, — неожиданно заявил Фило, — на месте Платона я бы рассуждал точно так же. По-моему, людям не следует избавлять себя от необходимости думать.

— Возможно, — кивнул Мате, — но у Платона были на этот счет и другие соображения, связанные с его мировоззрением. Как философ-идеалист, он презирал все материальное, преходящее, осязаемое. Грубое плотницкое приспособление принижало в его глазах науку, предметом которой, по его мнению, должно быть только отвлеченное, высокое, бесконечное. Кроме того (это уж моя собственная догадка!), всякий механический прибор неминуемо связан с движением. Вот и прибор Эратосфена основан на передвижении планок. А в те времена вводить движение в геометрию считалось дурным тоном. Так полагали и Платон, и ученик его Аристотель, а вслед за Аристотелем друг наш Хайям. Между прочим, доказательство пятого постулата, принадлежащее ал-Хайсаму, Хайям критиковал как раз за то, что в нем есть элемент движения…

— Хорошо, что вы вспомнили о Хайяме! — обрадовался Фило. — Любопытно бы узнать, как он умудрялся решать кубические уравнения с помощью конических сечений?

— Прекрасный вопрос! — воодушевился Мате. — Только что собирался рассказать вам о способе удвоения куба, придуманном Менехмом.

— В огороде бузина, а в Киеве дядька! При чем тут Менехм? Я же вас про Хайяма спрашиваю! Про Хайяма, который жил полтора тысячелетия спустя!

— Тем не менее между ними прямая связь. И сейчас вы это поймете, если только нальете мне еще стакан вашего несравненного чая.

СНОВА КОНИЧЕСКИЕ СЕЧЕНИЯ

— Так вот, — продолжал Мате, принимая из рук Фило заново наполненный стакан, — вы уже сами установили, что задача об удвоении куба сводится к вычислению корня кубического из двух. На языке современной алгебры, то есть пользуясь буквенными обозначениями, это можно записать так:

что вытекает из известного еще в Древнем Вавилоне уравнения x3 = 2. Менехм предложил записать это уравнение в виде двойной пропорции:

1/х = х/у = у/2.

— Не понимаю, — сказал Фило, — откуда взялся игрек?

Мате возвел очи к небу. О Господи! Он и забыл, что для Фило алгебраические преобразования — китайская грамота.

— Исключите из этих двух пропорций смущающий вас игрек, и вы снова получите x3 = 2, — объяснил он, доставая блокнот. — Смотрите. Из пропорции 1/х = х/у следует, что у = х2. Подставьте в равенство ху = 2 вместо игрека x2, и получится, что х3 = 2. Теперь вы видите, что от преобразования, сделанного Менехмом, наше первоначальное уравнение ничуть не изменилось.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.