Математика. Утрата определенности. - Клайн Морис Страница 2
- Категория: Научные и научно-популярные книги / Математика
- Автор: Клайн Морис
- Страниц: 136
- Добавлено: 2020-09-17 04:14:38
Математика. Утрата определенности. - Клайн Морис краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Математика. Утрата определенности. - Клайн Морис» бесплатно полную версию:Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.
Рассчитана на достаточно широкий круг читателей с общенаучными интересами.
Математика. Утрата определенности. - Клайн Морис читать онлайн бесплатно
Слишком заострена также и гл. XIII «Математика в изоляции». Действительно, в наши дни, видимо, уже невозможны личности, подобные, скажем, Герману Гельмгольцу — великому врачу, физиологу, физику, механику и математику; тем не менее это еще не дает оснований к тому, чтобы говорить о полном отрыве математики от реальной жизни. Конечно, очень многие современные математики не интересуются приложениями своей науки, и немало из печатающихся ныне в математических журналах статей «канет в Лету», но это никак не относится к вождям математической науки нашего века, по которым стараются равняться все остальные ученые, как не касается и наиболее значительных работ, кстати сказать, нередка оцениваемых по заслугам лишь много позже. Автор специально отмечает глубокий интерес к естествознанию (в иных случаях — и к гуманитарным наукам) и конкретно к физике всех крупнейших математиков нашего столетия, внесших выдающийся вклад в эту область знания. Здесь можно назвать Анри Пуанкаре (небесная механика, специальная теория относительности) и Давида Гильберта (общая теория относительности); Германа Вейля (теория относительности, квантовая механика) и Джона фон Неймана (квантовая механика, создание ЭВМ, математические методы экономики, теория автоматов); Андрея Николаевича Колмогорова (теория турбулентности в механике, теория динамических систем, математические методы в биологии, математическое стиховедение) и Джорджа Дэвида Биркгофа (теория относительности, динамические системы, математические методы эстетики). Сходную картину мы наблюдаем и в наши дни, когда почти все лидеры математической науки разных поколений отнюдь не чураются решения практических проблем. Да и само различие между «чистой» и прикладной математикой точному учету не поддается: нередко творцы новых разделов математики даже не подозревают, сколь большое практическое применение могут найти в дальнейшем их «чиста математические» результаты. Так, теория функций комплексного переменного создавалась Коши, Риманом и Вейерштрассом, которые, конечно, не могли предположить, что много позже H.E. Жуковский укажет на важность этого математического аппарата для решения задач возникшей тогда новой области техники: гидро- и аэромеханики. Дж. Буль и другие логики XIX в. даже не подозревали, что разрабатывают аппарат, который в XX в. будет положен в основу функционирования ЭВМ, а знаменитый Н. Бурбаки в своих «Очерках по истории математики» [68] не так уже задолго до современного «октавного бума» в физике элементарных частиц довольно пренебрежительно отозвался об открытой А. Кэли неассоциативной алгебре гиперкомплексных чисел с восьмью комплексными единицами (алгебре октав; ср. со сказанным ниже).
Стремясь облегчить чтение книги М. Клайна лицам, не имеющим математического образования, или начинающим математикам, мы сочли необходимым дополнить авторский текст некоторыми пояснениями и уточнениями (они собраны в разделе «Примечания» в конце книги). Кроме того, к авторскому списку литературы, ориентированному исключительно на англоязычного читателя (где мы, однако, указали имеющиеся на русском языке переводы некоторых из перечисленных автором книг), был прибавлен список книг (главным образом на русском языке), объединенных в раздел «Дополнительная литература». Следует также заметить, что у М. Клайна использование названной им литературы целиком предоставлено инициативе читателя: в английском оригинале книги не содержится ни одной ссылки на эту литературу. Таким образом, все имеющиеся в настоящем (русском) издании ссылки на литературу принадлежат переводчику и редактору.
Заканчивая это (по необходимости несколько затянувшееся) предисловие, я хотел бы выразить надежду, что читатель получит удовольствие от предлагаемой ему книги — не во всех отношениях бесспорной, но безусловно яркой и очень интересной по содержанию.
И.М. Яглом
Вступление
Эта книга — о глубоких изменениях, которые претерпели взгляды человека на природу и роль математики. Ныне мы знаем, что математика не обладает теми качествами, которые некогда снискали ей всеобщее уважение и восхищение. Наши предшественники видели в математике непревзойденный образец строгих рассуждений, свод незыблемых «истин в себе» и истин о законах природы. Главная тема этой книги — рассказ о том, как человек пришел к осознанию ложности подобных представлений и к современному пониманию природы и роли математики. Краткий обзор избранной темы содержится уже во введении. Отдельные разрозненные факты можно было бы собрать воедино, если проследить историю математики во всех деталях. Но тем, кого интересует главным образом разительные перемены, происшедшие в наших взглядах на природу и роль математики, более доступен и понятен прямой подход, свободный от второстепенных частностей и тем самым позволяющий выделить общие идеи.
Возможно, многие математики предпочли бы вести откровенный разговор о современном статусе своей науки в узком кругу профессионалов. Публичное обсуждение возникающих трудностей они считают таким же проявлением дурного вкуса, как разглашение перед посторонними семейных тайн. Но мыслящие люди должны отчетливо сознавать сильные и слабые стороны тех средств, которыми они располагают. Ясное понимание ограниченности (равно как и возможностей) того или иного подхода приносит несравненно больше пользы, чем слепая вера, способная исказить наши представления или даже привести нас к краху.
Я хотел бы поблагодарить сотрудников издательства «Оксфорд юниверсити пресс» за внимательное отношение к этой книге и выразить особую признательность Уильяму Ч. Халпину и Шелдону Майеру за понимание важности популярного изложения затронутых мной проблем, а также Леоне Кейплесс и Кертиссу Черчу за ценные замечания и критику. Моей жене Элен я обязан многочисленными исправлениями, внесенными ею при чтении рукописи и корректуры.
Пользуясь случаем, я хотел бы поблагодарить Математическую ассоциацию США за разрешение использовать в книге материалы из статей издаваемого ею журнала The American Mathematical Monthly(«Американский математический ежемесячник»).
М. Клайн
Бруклин, штат Нью-Йорк
Январь 1980 г.
Боги людям открыли не все. В поиск пустившись, люди сами познали немало. * * * Предположим, что мы не так уж далеки от истины. * * * Ни теперь, ни во веки знать никому не дано Истину о богах и о том, что я вам толкую. Если случится кому истину изречь, То ведать о том он не в силах, И над всем внешняя форма царит. КсенофанВведение: основной тезис
Лучший метод для предвидения будущего развития математических наук заключается в изучении истории и нынешнего состояния этих наук. {5}
Анри ПуанкареОдни трагедии порождают войны, голод, чуму, другие — в мире идей — вызваны ограниченностью человеческого разума. Эта книга — горестный рассказ о бедствиях, выпавших на долю математики — наиболее древнего и не имеющего себе равных творения людей, плода их неустанных и многообразных усилий, направленных на использование способности человека мыслить.
Можно также сказать, что эта книга на общедоступном уровне повествует о расцвете и закате величия математики. Позволительно спросить: уместно ли говорить об упадке математики в наше время, когда ее границы необычайно расширились, когда научная деятельность в области математики ведется во все возрастающих масштабах и достигла небывалого расцвета, когда ежегодно публикуются тысячи работ по математике, все большее внимание привлекают вычислительные машины и когда поиск количественных соотношений захватывает все новые области, особенно в биологических и социальных науках? В чем причина трагедии? Прежде чем ответить на эти вопросы, следует напомнить, какие достижения математики снискали ей высочайший престиж, всеобщее признание и славу.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.