Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. Страница 20

Тут можно читать бесплатно Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» бесплатно полную версию:
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. читать онлайн бесплатно

Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - читать книгу онлайн бесплатно, автор Джон Дербишир

В связи с осознанием этой новой мысли, сменим обозначение N на другую букву, которая имеет меньше традиционных ассоциаций с целыми числами. Очевидным выбором, конечно, была бы буква x. Но Риман в своей работе 1859 года не использовал икса. Подобные вопросы в его время не были урегулированы. Вместо этого он пользовался буквой s; а его работа 1859 года приобрела такое значение, что все математики, жившие после Римана, вслед за ним использовали ту же букву. В исследованиях, посвященных дзета-функции, аргумент всегда обозначается буквой s.

И вот наконец перед нами дзета-функция Римана (дзета, которая пишется как ζ, — это шестая буква греческого алфавита) (5.2):

VIII.

Прежде чем двигаться дальше, давайте введем полезные математические обозначения, которые сократят работу по набору формул. (Думаете, легко вставить штуки, подобные выражению (5.2), в Microsoft Word?)

Если математики хотят сложить некоторое множество членов, которые все построены по общему закону, то они используют знак ∑. Это заглавная буква «сигма», восемнадцатая буква греческого алфавита, обозначающая греческую «с» (первую букву в слове «сумма»). Применяется она следующим образом. Суммируемый член, записанный с помощью данного правила, помещается «под» (на самом деле имеется в виду — справа, хотя вопреки логике говорится «под») знаком сигмы. А снизу и сверху от сигмы указывается, где сумма начинается и где заканчивается. Например, выражение

представляет собой математическую «стенографию» — краткую запись выражения √12 + √13 + √14 + √15. Сигма говорит нам: «Сложить их!»; выражения сверху и снизу от сигмы показывают, где начать сложение и где его закончить; и наконец, выражение под знаком сигмы говорит, что, собственно, надо складывать — в данном случае √n.

Математики не особенно педантичны по поводу стиля таких выражений. Приведенную выше сумму часто записывают как

поскольку ясно, что именно n пробегает значения от 12 до 15. Теперь, вовсю используя знак сигмы, мы можем не тратить силы на лишние символы, а записать выражение (5.2) в виде

А с учетом 5-го правила действий со степенями это же можно записать как

И более того, поскольку n с очевидностью (и часто) используется для обозначения положительных целых чисел 1, 2, 3, 4, …, математики сокращают запись еще сильнее и просто пишут

что выражает ту же самую дзета-функцию Римана. Читается это так: «дзета от s определена как взятая по всем n сумма от n в степени минус s». Здесь «по всем n» понимается как «по всем целым положительным п».

IX.

Получив дзета-функцию в виде изящного выражения, посмотрим повнимательнее на ее аргумент s. Из главы 1.iii мы уже знаем, что при s, равном единице, ряд расходится, и, следовательно, у дзета-функции нет значения. При s, равном 2, 3, 4, …, он всегда сходится и тем самым дает значения дзета-функции (см. таблицу 5.1). На самом деле можно показать, что ряд сходится при любом s, большем единицы. При s, равном 1,5, ряд сходится к 2,612375…. При s, равном 1,1, он сходится к 10,584448…. А при s, равном 1,0001, он сходится к 10000,577222…. Может показаться странным, что ряд расходится при s = 1, но при этом умудряется сходиться при s = 1,0001. Это, однако, нормальная ситуация в математике. На самом деле, когда s очень близко к 1, дзета-функция замечательным образом ведет себя подобно функции 1/(s − 1). Эта функция также имеет значения при всех s, кроме того случая, когда s в точности равняется 1, поскольку знаменатель тогда равен нулю, а на нуль делить нельзя.

Некоторую ясность может внести график. На рисунке 5.4 показан график дзета-функции. Как видно, когда аргумент s приближается к 1 справа, значения функции убегают на бесконечность, а когда s само уходит на бесконечность далеко справа, функция все более и более приближается к 1. (Я пририсовал еще два пунктира: линию s = 1 и график постоянной функции.)

Рисунок 5.4. Дзета-функция для аргументов, превышающих 1.

На графике не показано ничего про дзета-функцию слева от линии s = 1. Это потому, что до сих пор мы предполагали, что s больше единицы. А если меньше? Если, скажем, s равно нулю? Ну, тогда выражение (5.2) примет вид

Но согласно 4-му правилу эта сумма равна 1 + 1 + 1 + 1 + 1 + 1 + …, что довольно очевидным образом расходится. Возьмем сумму ста членов: она будет равна 100; тысячи — 1000. Сложение миллиона слагаемых дает значение 1000 000. Да, ряд расходится.

С отрицательными числами дело обстоит еще хуже. Каково значение выражения (5.2), если s равно −1? Из 5-го правила следует, что 2−1 — это просто 1/2, 3−1 — просто 1/3 и т.д. Поскольку 1:1/2 есть просто 2, 1:1/3 — просто 3 и т.д., наш ряд принимает вид 1 + 2 + 3 + 4 + 5 + …, что определенно расходится. А как насчет s = 1/2? Поскольку 21/2 — это просто √2 и т.д., ряд принимает вид

Поскольку квадратный корень из любого целого числа меньше самого числа, каждый член этого ряда[41] больше, чем соответствующий член ряда 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + …. (Элементарная алгебра: если a меньше, чем b, то 1/a больше, чем 1/b. Например, 2 меньше, чем 4, но 1/2 больше, чем 1/4). Указанный ряд расходится, а значит, интересующий нас ряд также расходится. Ну и правда, если вы потрудитесь вычислить суммы, то окажется, что первые десять членов суммируются к 5,020997899…, первые сто — к 18,589603824…, первые тысяча — к 61,801008765…, а первые десять тысяч — к 198,544645449… и т.д.

Похоже, что на графике изображено все, что можно показать про дзета-функцию Римана. Кроме этого, ничего больше нет. Функция имеет значения, только когда s больше единицы. Или, как мы теперь можем сказать с использованием должного профессионального термина, область определения дзета-функции составляют все числа, большие единицы. Верно? Нет!

Глава 6. Великое соединение

I.

Китайское слово Тай-е буквально переводится как «самый дальний дедушка» (прадедушка). Такой титул присвоен в семье моей жены ее деду по отцовской линии. Когда мы ездили в Китай летом 2001 года, нашей первейшей обязанностью было навестить Тай-е. Семья бесконечно им гордится, ибо он дожил до 97 лет в добром здравии и с ясной головой. «Ему девяносто семь лет! — говорили мне все. — Вам непременно надо встретиться с ним!» Я и встретился с ним — бодрым, располагающим к себе Буддой в цветущем человеческом воплощении, с румяным лицом и по-прежнему острым умом. Однако вопрос о том, правда ли ему 97 лет, довольно интересен.

Тай-е родился на третий день двенадцатого лунного месяца лунного года и сы по традиционному летосчислению, принятому в поднебесной.[42] По западному календарю это было 28 декабря 1905 года. Поскольку мой приезд пришелся на начало июля 2001 года, возраст Тай-е по современному западному исчислению в тот момент составлял 951/2 лет и несколько дней. Так почему же все говорили, что ему 97 лет? Потому что по старому китайскому стилю, которого и придерживался Тай-е, возраст его при рождении составлял один год, и к этому добавлялся год всякий раз, как наступал Новый год по лунному календарю — каковой случился 24 января 1906 года по нашему календарю, через 27 дней после его рождения. Он не прожил еще и месяца в этом мире, а ему уже было два года! Таким образом, когда наступил лунный Новый год в 2001 году (что случилось также 24 января, хотя вообще-то лунный Новый год может выпасть на любую дату между 21 января и 20 февраля), Самый Дальний Дедушка отпраздновал свое 97-летие.

В традиционной китайской системе подсчета возраста нет ничего неправильного. Вы появляетесь в этом мире в такой-то день. Этот день является частью определенного года. Ясно, что этот год — ваш первый год. Если спустя 28 дней наступает следующий год — отлично, он будет вашим вторым годом. Все это вполне осмысленно. Единственная причина, по которой такая система выглядит странно, состоит в том, что современные люди (в Китае в той же степени, что и на Западе) привыкли при подсчете лет оперировать временем как чем-то таким, что можно измерить. Но когда Тай-е был молодым, китайцы воспринимали возраст человека как нечто, подлежащее счету.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.