Борис Бирюков - Жар холодных числ и пафос бесстрастной логики Страница 23

Тут можно читать бесплатно Борис Бирюков - Жар холодных числ и пафос бесстрастной логики. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Борис Бирюков - Жар холодных числ и пафос бесстрастной логики краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Борис Бирюков - Жар холодных числ и пафос бесстрастной логики» бесплатно полную версию:
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.

Борис Бирюков - Жар холодных числ и пафос бесстрастной логики читать онлайн бесплатно

Борис Бирюков - Жар холодных числ и пафос бесстрастной логики - читать книгу онлайн бесплатно, автор Борис Бирюков

Но несмотря на всю скрупулезность Фреге, строивши на очерченной логико-множественной базе арифметику натуральных чисел, его логическая конструкция оказалась формально-противоречивой. Суть дела состояла в следующем.

Логическая теория Фреге позволяла, грубо говора вводить в рассмотрение предикаты от предикатов (то есть свойства предикатов и отношения между предикатами предикаты от предикатов, определенных на предикатах, а также множества множеств, множества множеств множеств и т. д. При этом никаких ограничений на образована множеств — на задание их с помощью предикатов — не налагалось. Это допускало в теорию такие образования как «свойство, которым оно само не обладает» или «множество, не входящее в самое себя в качестве элемента». Скажем, множество всех абстрактных понятий содержит само себя в качестве элемента, так как предикат «быть абстрактным понятием» есть тоже абстрактное понятие — в отличив например, от множества людей, которое не содержит саж» себя как элемент, поскольку человечество не есть человек. Поэтому, если быть последовательным в проведении логико-множественного подхода, придется допустить законное» понятия «множества всех множеств, не включающих себя в качестве элемента».

В 1902 году Рассел обнаружил, что в указанном понятии заключено логическое противоречие. Он, видимо, пытался разобраться в возникшей ситуации сам, но сомнения одолевали, и поэтому через год он обратился письменно к Фреге, прося дать разъяснения. Письмо, очевидно, из уважения к Фреге, было написано по-немецки. Мы приводим полный перевод этого исторического документа, сделанный с английского перевода, выполненного Яном ван Хейеноортом и прочитанного лично Бертраном Расселом, разрешившим его публикацию в книге Хейенсюрта «От Фреге до Гёделя»[24] (эта книга представляет собой сборник классических работ — и фрагментов работ — по математической логике и основаниям математики).

Фрайдис-хилл, Хейслмир, 16.6.1902

Дорогой коллега, уже полтора года назад я познакомился с Вашими «Основными законами арифметики», но только сейчас я сумел найти время, чтобы изучить Вашу работу тщательно, как я все время намеревался это сделать. Я обнаружил, что согласен с Вами во всем главном, в частности в том, что Вы отвергаете все психологические моменты в логике, и β Вашей высокой оценке идеографии[25] в основаниях математики, которые сейчас трудно отделить от формальной логики. В связи со многими частными вопросами я нашел в Вашей книге множество рассуждений, тонких исследований и определений, которые тщетно было бы искать в сочинениях других логиков. В вопросах, касающихся функций, я самостоятельно пришел к взглядам, совпадающим с Вашими даже в деталях. Имеется только один пункт, в котором я встретился с трудностью. Вы утверждаете, что функция[26] не нуждается в прямом определении. Я тоже раньше так думал, но сейчас такая точка зрения кажется мне сомнительной из-за следующего противоречия. Пусть w есть предикат «быть предикатом, который не относится к самому себе». Относится ли этот предикат к самому себе? Из любого ответа на этот вопрос вытекает противоположный ответ. Поэтому мы можем заключить, что w не есть предикат. Точно так же не существует такого множества (рассматриваемого как целое), элементами которого являются множества. не содержащие самих себя. Отсюда я заключаю, что при определенных условиях понятию множества не соответствует ничего такого, что может рассматриваться как объект.

Сейчас я заканчиваю книгу о принципах математики[27], и в ней мне хотелось бы рассмотреть Вашу работу весьма подробно. Я уже имею в распоряжении Ваши книги или скоро куплю их, но я был бы весьма благодарен, если бы Вы прислали мне оттиски Ваших статей, опубликованных в периодических изданиях. Впрочем, если это невозможно, я могу читать их, беря в библиотеке.

Умение хорошо применять логику в фундаментальных вопросах, где бессильны формулы, встречается очень редко; в Ваших работах я нахожу лучшее из таких применений, имеющихся на сегодня, поэтому я разрешу себе выразить Вам свое глубокое уважение. Очень жаль, что Вы не опубликовали второй том «Основных законов»; надеюсь, что это все же будет сделано.

С уважением Бертран Рассел

В словах Рассела о втором томе книги Фреге не было, конечно, никакой иронии. Но была ирония судьбы, ибо этот том вот-вот должен был выйти в свет, когда Фреге получил письмо Рассела. Проявив редкую научную добросовестность и мужество, Фреге включил в книгу вышедшую в 1903 году, следующие слова:

«Вряд ли существует что-нибудь более нежелательное для ученого, чем после окончания работы увидеть, как рушатся ее основы. Именно в такое положение поставило меня письмо г-на Бертрана Рассела, полученное мной, когда книга была уже в печати»[28].

Как пишет американский логик X. Карри в своей книге «Основания математической логики», последствия письма Рассела были для Фреге трагическими. «Хотя ему тогда было всего пятьдесят пять лет и он прожил после этого более двадцати лет, он больше не опубликовал ни одной значительной работы по логике»[29]. Более того, после обнаружения противоречия Фреге два семестра не читал лекций в Иенском университете, профессором которого состоял, а потом, возобновив их, читал лекции по «записи в понятиях» и основаниям геометрии, но не по основаниям арифметики[30].

До конца дней он пытался найти выход из возникшей трудности обоснования арифметики, возложив все надежды на геометрию, — идя от нее, он пытался наметить пути обоснования и арифметики, и всей математики[31].

Но как бы нас ни трогала судьба Фреге, в первую очередь нам интересно, во что вылился логицизм как течение в основаниях математики и что стало с теоретико-множественной концепцией ее обоснования. Теории обладают значительно большей жизнеспособностью и стойкостью, чем люди. Что касается логицизма, то его взялся отремонтировать сам «разрушитель» — Бертран Рассел. Вместе с Альфредом Уайтхедом он издал в 1910—1913 годах труд «Principia Mathematica», в котором излагался новый вариант логико-множественного подхода к арифметике, где с помощью некоторых ограничений, наложенных на процесс формирования «вторичных» множеств приведенный в письме Рассела парадокс был исключен[32]. Однако система Рассела — Уайтхеда оказалась слишком громоздкой и базирующейся на допущениях, которые далеко не всем математикам и логикам представлялись убедительными[33].

Возникшие трудности были сигналом тревоги для тех специалистов, которые «отвечали» за основания математики. Источник противоречия, возникшего у Фреге, был, очевидно, в самом построении рассуждений. Поэтому надо было по-новому взглянуть на весь процесс математического доказательства и прежде всего проанализировать лежащие в его основе допущения. Так началась великая переоценка математических ценностей, которая далеко еще не закончилась и к настоящему времени, но уже дала ценнейшие плоды не только в математике и логике, но и в осмысливании проблем человеческого познания и его возможностей в создании машинных «усилителей интеллекта».

5. ПРОВОЗВЕСТНИКИ ПЕРЕМЕН

Мы уже сказали, что первой математической реакцией на трудности, обнаруженные при последовательном проведении теоретико-множественной установки в математике, они выразились не только в парадоксе Рассела, но и в ряде других формально-логических противоречий в канторовской теории, некоторые из которых были сформулированы даже раньше, чем противоречие в системе Фреге, были «ремонтные меры», предпринятые Расселом. Но этот мыслитель продолжал стоять на теоретико-множественной позиции.

Поэтому естественно, что нашлись люди, которые сочли эти меры полумерами и призвали математический мир пойти в отказе от прежнего образа мыслей гораздо дальше. Реформы ничего не дадут, провозгласили они, нужна революция! Одним из наиболее «левых» был голландский математик, уже получивший к тому времени известность своими работами в области топологии, Луитцен Ян Эгбертус Брауэр (1881—1966)[1]

При изложении платформы Брауэра возникают большие трудности, связанные с несколькими причинами. Брауэр все свои главные статьи по философии математики писал по-голландски, употребляя, как заявляют переводчики, специфические и тяжеловесные выражения, которым трудно найти эквиваленты в других языках. Он, по-видимому, не считал, что его философско-математические убеждения можно достаточно ясно объяснить другим людям; скорее, он носил в себе определенные ощущения того, какой, по его мнению, должна быть математика. Позиция Брауэра менялась и уточнялась с течением времени, и нет никакой гарантии, что многочисленные ее толкования достаточно правильны.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.