Стивен Вайнберг - Мечты об окончательной теории Страница 24

Тут можно читать бесплатно Стивен Вайнберг - Мечты об окончательной теории. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Стивен Вайнберг - Мечты об окончательной теории

Стивен Вайнберг - Мечты об окончательной теории краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Стивен Вайнберг - Мечты об окончательной теории» бесплатно полную версию:
В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами. Она распахивает читателю двери в новый мир и помогает понять то, с чем он там встретится.

Стивен Вайнберг - Мечты об окончательной теории читать онлайн бесплатно

Стивен Вайнберг - Мечты об окончательной теории - читать книгу онлайн бесплатно, автор Стивен Вайнберг

Почти десять лет после 1907 г. Эйнштейн провел в поисках соответствующего этим идеям математического аппарата. Наконец ему удалось найти то, что требовалось, в глубокой аналогии между ролями гравитации в физике и кривизны в геометрии. То, что с помощью выбора подходящей свободно падающей системы отсчета можно добиться, что сила тяготения на короткое время исчезает в малой окрестности любой точки в гравитационном поле, очень похоже на свойство кривых поверхностей, заключающееся в том, что всегда можно сделать карту этой поверхности, на которой вблизи любой точки будут правильно изображены все расстояния и направления. Если поверхность кривая, то ни одна карта не способна правильно отобразить расстояния и направления везде; всякая карта большой области является компромиссом, в большей или меньшей степени искажающим расстояния и направления. Знакомая всем проекция Меркатора, используемая при создании географических карт Земли, дает достаточно точное представление об истинных расстояниях и направлениях вблизи экватора, но чудовищно искажает картину вблизи полюсов, так что в результате Гренландия распухает во много раз больше своего истинного размера. Точно так же одним из признаков того, что вы находитесь в гравитационном поле, является невозможность найти единственную свободно падающую систему отсчета, в которой везде полностью скомпенсированы гравитационное поле и эффекты инерции[79].

Начав с этой аналогии между тяготением и кривизной, Эйнштейн пришел к выводу, что тяготение есть не что иное, как проявление кривизны пространства и времени. Для развития этой идеи ему потребовалась математическая теория искривленных пространств, обобщающая знакомую геометрию сферической двумерной поверхности Земли. Эйнштейн был величайшим физиком мира со времен Ньютона, естественно, он знал математику так же, как и большинство физиков его времени, но все же математиком он не был. В конце концов точно то, что ему требовалось, нашлось в полностью разработанной Риманом и другими математиками предыдущего столетия теории искривленных пространств. В окончательной форме общая теория относительности стала просто новой интерпретацией существовавшей математической теории искривленных пространств в терминах тяготения, дополненной полевым уравнением, определявшим кривизну, создаваемую любым данным количеством вещества и энергии. Существенно, что для Солнечной системы с ее малой плотностью и малыми скоростями движения планет общая теория относительности приводила в точности к тем же результатам, что и теория Ньютона, так что две теории отличались только крохотными эффектами вроде прецессии орбит или отклонения луча света.

У меня есть еще, что сказать дальше по поводу красоты общей теории относительности. Пока что я надеюсь, что сказал достаточно, чтобы дать читателю возможность почувствовать привлекательность этих идей. Думаю, что именно эта внутренняя привлекательность и поддерживала веру физиков в ОТО в течении десятилетий, когда данные, полученные после очередных солнечных затмений, выглядели все более разочаровывающими.

Такое впечатление еще более усиливается, если посмотреть на то, как воспринимали общую теорию относительности в первые годы ее существования до результатов экспедиции по изучению затмения 1919 г. Самым важным было то, как сам Эйнштейн воспринимал свою теорию. В открытке, адресованной более старшему теоретику Арнольду Зоммерфельду и датированной 8 февраля 1916г., Эйнштейн писал: «Вы убедитесь в справедливости общей теории относительности сразу же, как только ее изучите. Поэтому я ни единым словом не собираюсь ее защищать». Я, конечно, не могу знать, до какой степени успешное вычисление прецессии орбиты Меркурия в 1916 г. повлияло на уверенность Эйнштейна в справедливости ОТО, но ясно, что задолго до того, как он сделал это вычисление, что-то должно было укреплять его веру в идеи, которые легли в основу теории, и толкало на дальнейшую работу. Этим чем-то могла быть только привлекательность самих идей.

Не следует недооценивать такую раннюю уверенность. История науки знает бесчисленное количество примеров ученых, у которых были хорошие идеи, но они не стали их развивать в свое время, хотя через много лет обнаруживалось (часто совсем другими людьми), что эти идеи приводят к заметному прогрессу в науке. Общераспространенной ошибкой является предположение, что ученые обязательно яростно защищают собственные идеи. Очень часто ученый, выдвинувший новую идею, сам подвергает ее необоснованной или избыточной критике только потому, что если начать эту идею серьезно развивать, то тогда нужно долго и упорно работать, причем (что более важно) забросив при этом все остальные исследования.

На самом деле общая теория относительности произвела глубокое впечатление на физиков. Многие выдающиеся специалисты в Германии и других странах узнали об ОТО и отнеслись к ней как к многообещающей и важной теории задолго до экспедиции 1919 г. Среди этих специалистов были не только Зоммерфельд в Мюнхене, Макс Борн и Давид Гильберт в Гёттингене и Хендрик Лоренц в Лейдене, с каждым из которых Эйнштейн общался во время войны, но и Поль Ланжевен во Франции и Артур Эддингтон в Англии (именно он организовал экспедицию 1919 г.). Очень показательны предложения о присуждении Эйнштейну Нобелевской премии, поступавшие начиная с 1916 г. Так, в 1916 г. Феликс Эренгафт выдвинул Эйнштейна на Нобелевскую премию за его теорию броуновского движения, а также за специальную и общую теории относительности. В 1917 г. А. Гааз выдвинул его за общую теорию относительности (отмечая как свидетельство правильности теории успешное вычисление прецессии орбиты Меркурия). В том же 1917 г. Эмиль Вартбург выдвинул Эйнштейна за многочисленные вклады в науку, включая общую теорию относительности. Еще ряд подобных выдвижений последовал в 1918 г. Наконец, в 1919 г., за четыре месяца до экспедиции по изучению затмения Солнца, Макс Планк, один из отцов современной физики, выдвинул Эйнштейна за создание общей теории относительности, прокомментировав это словами, что «Эйнштейн сделал первый шаг за круг теории Ньютона».

Я совершенно не утверждаю, что мировое сообщество физиков было с самого начала полностью и безоговорочно убеждено в справедливости ОТО. Например, в докладе Нобелевского комитета за 1919 г. предлагалось подождать до солнечного затмения 29 мая 1919 г., прежде чем принимать решение по поводу ОТО. Даже после 1919 г., когда Эйнштейну все-таки присудили Нобелевскую премию, ее дали ему не за создание специальной и общей теорий относительности, а «за его вклад в теоретическую физику, в частности за открытие закона фотоэлектрического эффекта».

На самом деле не так уж и важно точно установить момент, когда физики на 75, на 90 или на 99 % убедились в истинности ОТО. Важным для прогресса в науке является не решение о том, что теория верна, а решение, что к этой теории следует отнестись серьезно, т.е. что она заслуживает того, чтобы рассказывать ее студентам, писать о ней учебники, наконец, использовать в собственных исследованиях. С этой точки зрения самой важной победой, одержанной ОТО на первых порах, было обращение в новую веру многих физиков (не считая самого Эйнштейна), в том числе британских астрономов. Они убедились не столько в том, что ОТО верна, сколько в том, что она приемлема и достаточно красива для того, чтобы посвятить проверке ее предсказаний значительную часть своих исследований и уехать за тысячи миль от Англии, чтобы наблюдать солнечное затмение 1919 г. Но еще до завершения общей теории относительности и успешного вычисления прецессии орбиты Меркурия красота эйнштейновской теории настолько захватила Эрвина Фрейндлиха из Королевской обсерватории в Берлине, что он снарядил на деньги Круппа экспедицию в Крым для наблюдения солнечного затмения 1914 г. (Война прервала его наблюдения, и за все свои старания Фрейндлих был временно задержан в России.)

Восприятие общей теории относительности зависело не от экспериментальных данных, как таковых, и не от внутренних качеств, присущих теории, а от сложного переплетения теории и эксперимента. Я подчеркиваю теоретическую сторону дела в противовес наивной переоценке экспериментальных данных. Ученые и историки науки уже давно отказались от старого тезиса Френсиса Бэкона, что научная гипотеза должна исследоваться путем терпеливого и беспристрастного наблюдения над природой. Совершенно очевидно, что Эйнштейн не копался в астрономических данных, создавая ОТО. И все же широко распространена точка зрения Джона Стюарта Милля, что проверить наши теории можно только с помощью наблюдений. Но, как мы видели, в отношении к ОТО эстетические суждения и экспериментальные данные были неразрывно связаны.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.