Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда Страница 25

Тут можно читать бесплатно Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда» бесплатно полную версию:
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда читать онлайн бесплатно

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать книгу онлайн бесплатно, автор Даглас Хофштадтер

Это и будет «доказательством». Почти все верят, что если посчитать квадратики, получится 144; мало кто когда-либо усомнился в этом результате. Конфликт между двумя точками зрения становится еще заметнее, когда мы рассматриваем такую проблему, как нахождение произведения 987654321 × 123456789. Прежде всего, практически невозможно построить прямоугольник нужного размера; но хуже всего то, что, даже если бы нам и удалось таковой построить и армии людей потратили бы столетия на подсчет квадратиков, все равно конечному результату поверил бы разве что особенно доверчивый человек. Слишком велика вероятность того, что кто-нибудь обязательно что-то напутал. Возможно ли, в таком случае, узнать ответ? Да, если вы доверяете символическому процессу манипуляции числами при помощи некоторых простых законов. Этот процесс объясняют детям как способ нахождения верного ответа; при этом мало кто из них видит, какой смысл скрывается за этим арифметическим трюком. Правила, маневрирующие цифрами при умножении, основаны на нескольких основных свойствах сложения и умножения, которые считаются верными для всех чисел.

Основные законы арифметики

Свойства, которые я имею в виду, можно пояснить на следующем примере. Представьте, что вы выкладываете несколько палочек:

/ // // // / /

и начинаете их считать. В то же время кто-то подсчитывает эти же палочки, начиная с другого конца. Читателю, вероятно, понятно, что результат получится одинаковый. Результат подсчета не зависит от того, как этот подсчет делается. Было бы бессмысленно пытаться доказать это предположение о свойствах сложения, настолько оно первично: либо вы его понимаете, либо нет — но в последнем случае вам не поможет никакое доказательство. Из этого предположения вытекают свойства коммутативности и ассоциативности сложения (первое заключается в том, что b + с = с + b во всех случаях; второе — в том, что b + (с + d) = (b + с) + d во всех случаях). То же предположение приводит нас к свойствам коммутативности и ассоциативности в умножении; достаточно представить множество кубиков, собранных вместе таким образом, что они составляют большое прямоугольное твердое тело. Коммутативность и ассоциативность умножения означают, что как бы вы ни поворачивали это тело, количество кубиков в нем не изменится. Эти предположения невозможно проверить во всех случаях, так как количество комбинаций бесконечно. Мы принимаем их как данное и верим в них (если мы вообще когда-нибудь о них задумываемся) так глубоко, как только можно во что-либо верить. Количество монет у нас в кармане не меняется оттого, что при ходьбе они перемещаются и бренчат; количество наших книг не изменится, если мы упакуем их в коробку, бросим коробку в багажник машины, отъедем на 100 километров, распакуем коробку и поставим книги на новую полку. Все это — часть того, что мы понимаем под словом число.

Встречаются люди, которые, столкнувшись с формулировкой какого-либо очевидного факта, находят удовольствие в том, что тут же пытаются доказать обратное. Я сам такой Фома Неверующий: записав свои примеры с палочками, деньгами и книгами, я сразу выдумал ситуации, в которых эти примеры перестают быть правильными. Вы, возможно, сделали то же самое. Все это я говорю к тому, чтобы показать, что числа как математическая абстракция весьма отличны от чисел, которые мы употребляем в повседневной жизни.

Все мы любим изобретать поговорки, которые, нарушая основные законы арифметики, иллюстрируют некие более глубокие «истины»: «1 да 1 равно 1» (любовники) или «1 плюс 1 плюс 1 равно 1» (святая Троица). Можно легко найти изъяны в подобных «формулах» — скажем, показав, что употребление знака «плюс» в них неверно. Так или иначе, подобных высказываний множество. По забрызганному дождем оконному стеклу сползают две капли; у самой рамы они сливаются в одну. Значит ли это, что 1 + 1 = 1? Из одного облака рождаются два; не доказательство ли это той же идеи? Отличить случаи, в которых мы можем говорить о сложении, от тех, где нам нужно какое-то другое понятие, не так-то просто. Размышляя об этом, мы, возможно, додумаемся до таких критериев, как разделение объектов в пространстве и их четкое отличие друг от друга. Но как подсчитать идеи? Или количество газов в атмосфере? Во многих источниках можно встретить высказывания типа: «В Индии 17 языков и 462 диалекта». В точных утверждениях такого рода есть нечто странное, так как сами понятия «язык» и «диалект» довольно расплывчаты.

Идеальные числа

В повседневном мире числа часто ведут себя плохо. Однако у людей имеется врожденное, пришедшее из древности чувство, что этого быть не должно. В абстрактном понятии числа, взятого вне связи с подсчетом бусинок, диалектов или облаков, есть нечто чистое и точное; должен существовать способ говорить о числах, не примешивая к ним глупую повседневность. Твердые правила, управляющие идеальными числами, являются основой арифметики, в то время как их следствия лежат в основе теории чисел. При переходе от чисел как объектов повседневной жизни к числам как объектам формальной системы возникает следующий важный вопрос: возможно ли заключить всю теорию чисел в рамки одной формальной системы? Действительно ли числа так чисты, ясны и регулярны, что их природа может быть полностью описана правилами какой-либо формальной системы? Картина «Освобождение», одно из самых прекрасных произведений Эшера, иллюстрирует этот удивительный контраст между формальным и неформальным и поразительную зону перехода между ними. Действительно ли числа свободны, как птицы? Страдают ли они, уловленные в тесную клетку формальной системы? Существует ли магическая зона перехода между числами, используемыми в повседневной жизни, и числами, написанными на бумаге?

Говоря о свойствах натуральных чисел, я имею в виду не только такие свойства, как, скажем, сумма определенной пары чисел. Ее легко можно подсчитать; никто из нас, выросших в двадцатом веке, не сомневается в возможности механизации таких процессов, как подсчет, сложение, умножение, и т. д. Я имею в виду такие свойства чисел, исследованием которых занимаются математики и для познания которых не достаточно, даже теоретически, никакого подсчета. Рассмотрим классический пример: утверждение «существует бесконечно много простых чисел». Прежде всего, не существует такого метода подсчета, который мог бы доказать или опровергнуть это утверждение. Лучшее, что мы можем сделать, — это затратить некоторое время на подсчет простых чисел и заключить, что их действительно имеется «целая куча». Однако никакой подсчет не скажет нам того, конечно или бесконечно количество простых чисел; любой подсчет всегда останется неполным. Это утверждение, называющееся «Теорема Эвклида» (обратите внимание на заглавную «Т»), совсем не очевидно. Однако со времен Эвклида все математики считают его истинным. В чем же дело?

Рис. 13. М. К. Эшер «Освобождение» (литография, 1955)

Доказательство Эвклида

Дело в том, что этот факт следует из неких рассуждений. Давайте проследим за этими рассуждениями. Рассмотрим вариант доказательства Эвклида, показывающий, что какое бы число мы ни взяли, всегда найдется большее простое число. Возьмем число N. Перемножим все положительные целые числа, начиная с 1 и кончая N; иными словами, найдем факториал N (он пишется «N!») Полученный результат делится на все числа, меньшие чем N. Если прибавить 1 к N!, то результат

не будет делиться на 2 (так как при делении на 2 получится 1 в остатке);

не будет делиться на 3 (так как при делении на 3 получится 1 в остатке);

не будет делиться на 4 (так как при делении на 4 получится 1 в остатке);

.

.

.

не будет делиться на N (так как при делении на N получится 1 в остатке);

Другими словами, если N!+1 и делимо на какое-то число, кроме самого себя и единицы, оно делимо только на числа, большие, чем N. Следовательно, либо N!+1 само простое число, либо его простые делители больше N. В любом случае, мы показали, что должно существовать простое число, большее N, и что, следовательно, количество простых чисел бесконечно.

Кстати, этот последний шаг называется обобщением; мы еще встретимся с этим понятием в более сложном контексте. Оно заключается в том, что, начав наши рассуждения с какого-либо числа N, мы указываем, что N может быть любым числом — следовательно, наше доказательство носит общий характер.

Эвклидово доказательство типично для так называемой «реальной математики». Оно просто, точно и изящно и иллюстрирует тот факт, что несколько коротких шагов могут увести нас весьма далеко от начального пункта. В нашем случае, таким начальным пунктом являлись основные идеи о свойствах умножения, деления, и так далее. Короткие шаги — это этапы рассуждения. Хотя каждый отдельный шаг кажется очевидным, конечный результат таковым не является. Нам никогда не удастся проверить, верно ли это утверждение Эвклида; однако мы верим в его истинность, поскольку мы верим в логические рассуждения. Если вы принимаете эти рассуждения, вам не остается выхода; раз вы согласились выслушать Эвклида, вам придется согласиться с его выводом. Этот отрадный факт означает, что математики всегда могут придти к согласию по поводу того, какие утверждения считать «истинными», а какие — «ложными».

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.