Чарльз Сейфе - Ноль: биография опасной идеи Страница 26

Тут можно читать бесплатно Чарльз Сейфе - Ноль: биография опасной идеи. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Чарльз Сейфе - Ноль: биография опасной идеи

Чарльз Сейфе - Ноль: биография опасной идеи краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Чарльз Сейфе - Ноль: биография опасной идеи» бесплатно полную версию:
Эта книга — история цифры 0, одного из самых необычных изобретений человечества. Споры вокруг этого невинного с виду круглого значка потрясали самые основы науки и религии, не раз приводили к войнам. Легендарные мыслители, от Пифагора до Эйнштейна, пытались разгадать тайну ноля. Древние календари и последние достижения астрофизики, вавилонские глиняные таблички и поиски «теории всего» — обо всем этом в книге «Ноль: биография опасной идеи». Это книга для каждого, кого интересует история математики и культуры, передовые идеи современной науки.

Чарльз Сейфе - Ноль: биография опасной идеи читать онлайн бесплатно

Чарльз Сейфе - Ноль: биография опасной идеи - читать книгу онлайн бесплатно, автор Чарльз Сейфе

В 1763 году Франция капитулировала, и Семилетняя война (официальному ее объявлению предшествовали два года сражений) закончилась. Победа сделала Англию преобладающей силой в мире, но далось это дорогой ценой. И Франция, и Англия были истощены и в долгах, следствием этого для обеих стран стали революционные потрясения. Немногим более чем через десятилетие после окончания Семилетней войны началась война за независимость американских колоний, лишившая Англию ее богатейших заморских владений. В 1789 году, как раз когда Джордж Вашингтон возглавил вновь образованные Соединенные Штаты, началась Французская революция. Через четыре года революционеры обезглавили короля Франции.

Математик Гаспар Монж подписал постановление революционного правительства о казни короля. Монж был превосходным геометром, специализировавшимся в стереометрии. Его заслугой было то, как архитекторы и инженеры изображали здания и машины: они создавали проекции сооружений на горизонтальную и вертикальную плоскости, сохраняя таким образом всю информацию, необходимую для создания объекта. Работы Монжа были так важны для армии, что значительная их часть была засекречена сначала революционным, а затем пришедшим ему на смену наполеоновским правительством.

Жан-Виктор Понселе был учеником Монжа, осваивавшим трехмерную геометрию в качестве инженера наполеоновской армии. К своему несчастью, Понселе оказался в армии, как раз когда Наполеон в 1812 году вступил в войну с Россией.

При отступлении от Москвы наполеоновская армия была почти полностью уничтожена жестокой русской зимой и не менее жестокой русской армией. После сражения под Красным Понселе, которого сочли убитым, остался на поле боя. Он был жив и попал в плен к русским. За время пребывания в плену Понселе создал новую дисциплину: проективную геометрию.

Математика Понселе была кульминацией работы, начатой художниками и архитекторами в XV веке — Филиппо Брунеллески и Леонардо да Винчи, которые обнаружили, как рисовать реалистично, используя перспективу. Когда все «параллельные» прямые сходятся в единственной точке на картине, зрителя заставляют верить, что они никогда не встретятся. Квадраты на полу на рисунке делаются трапециями, каждый предмет мягко искажается, но все выглядит совершенно естественным.

Таково свойство бесконечно удаленной точки — ноля в бесконечности.

Иоганн Кеплер, ученый, открывший, что планеты движутся по эллиптическим орбитам, распространил эту идею — идею бесконечно удаленной точки — еще на один шаг вперед. Эллипсы имеют два фокуса; чем более удлиненным является эллипс, тем дальше отстоят друг от друга фокусы. Все эллипсы обладают одним и тем же свойством: если бы у вас оказалось зеркало эллиптической формы и вы поместили в один из фокусов лампочку, все световые лучи сошлись бы в другом фокусе, вне зависимости от того, насколько вытянут был бы эллипс (рис. 29).

Рис. 29. Световые лучи в эллипсе

Кеплер в уме все больше и больше вытягивал эллипс, удаляя его фокус все дальше. Потом Кеплер вообразил, что второй фокус удален бесконечно далеко: он стал точкой в бесконечности. Неожиданно эллипс превратился в параболу, а все прямые, сходившиеся к точке, сделались параллельными. Парабола — это просто эллипс с одним фокусом в бесконечности (рис. 30).

Рис.30. Растягивание эллипса дает параболу

Рис.31. Получение эллипса и параболы с помощью фонарика

Это можно увидеть с помощью фонарика. Войдите в темную комнату и встаньте у стены. Направьте свет фонарика прямо на стену. На стене вы увидите ясный круг света. Теперь медленно наклоняйте фонарик вверх (рис. 31). Вы увидите, что круг растягивается в эллипс, который делается все длиннее и длиннее по мере того как вы увеличиваете наклон. Неожиданно эллипс раскрывается и превращается в параболу. Таким образом кеплеровская бесконечно удаленная точка доказала, что параболы и эллипсы в сущности одно и то же.

Это было началом проективной геометрии, дисциплины, в которой математики рассматривают тени и проекции геометрических фигур, чтобы узнать их скрытые свойства, даже более примечательные, чем родственность парабол и эллипсов. Впрочем, все зависело от того, признавалась ли бесконечно удаленная точка.

Жерар Дезарг, французский архитектор XVII века, был одним из зачинателей проективной геометрии. Он использовал бесконечно удаленную точку для доказательства ряда важных новых теорем, однако коллеги Дезарга не могли понять его терминологии и сочли его сумасшедшим. Хотя некоторые математики, например Блез Паскаль, оценили работы Дезарга, они были забыты.

Для Жана-Виктора Понселе это не имело значения. Как ученик Монжа, Понселе освоил систему построения проекций в двух плоскостях, а будучи военнопленным, имел достаточно свободного времени. Он использовал свое пребывание в плену для того, чтобы заново открыть концепцию бесконечно удаленной точки. Использовав ее для развития идей Монжа, он стал подлинным создателем проективной геометрии. По возвращении из России (он привез с собой счеты — русский абак, к тому времени архаическую диковинку) Понселе поднял проективную геометрию до уровня настоящего высокого искусства[30]. Впрочем, Понселе не имел представления о том, что проективная геометрия раскроет таинственную природу ноля, потому что для этого требовался второй важный прорыв, еще один важный компонент — комплексная плоскость. За этой частью загадки мы должны отправиться в Германию.

Карл Фридрих Гаусс, родившийся в 1777 году, был немецким вундеркиндом. Он начал свою математическую карьеру с исследования мнимых чисел. Его докторская диссертация включала доказательство фундаментальной теоремы алгебры — что полином степени n (квадратное уравнение имеет степень 2, кубическое — 3 и т.д.) имеет n корней. Это верно только в том случае, если вы принимаете мнимые числа, как и вещественные.

За свою жизнь Гаусс исследовал множество проблем, относящихся к самым разным разделам математики над невероятным множеством тем; его исследование работы по теории кривизны стало ключевым компонентом для общей теории относительности Эйнштейна. Кроме того, целую новую структуру в математике создал метод изображения комплексных чисел Гаусса.

В 1830-е годы Гаусс понял, что каждое комплексное число — число, имеющее вещественную и мнимую часть, как 1 — 2i — может быть изображено в декартовых координатах. Горизонтальная ось представляет вещественную часть комплексного числа, а вертикальная — мнимую (рис. 32). Эта простая конструкция, названная комплексной плоскостью, раскрыла многое о том, как работают числа.

Рис. 32. Комплексная плоскость

Возьмите, например, число i. Угол между ним и осью x составляет 90 градусов (рис. 33). Что произойдет, когда вы возведете i в квадрат? Ну, по определению, i2 = –1. Эта точка отстоит на 180 градусов от оси x: угол удвоился.

Рис. 33. i под углом 90 градусов

Рис. 34. Различные возможности i

Число i3 равно –i — в 270 градусах от оси x: угол утроился. Число i4 = 1. Мы совершили оборот в 360 градусов — ровно в четыре раза больше исходного угла (рис. 34). Это не совпадение. Возьмите любое комплексное число и измерьте угол. Возведение этого числа в степень n увеличивает угол в n раз. И по мере того как вы все больше и больше увеличиваете n, число по спирали движется внутрь или наружу, в зависимости от того, находится ли исходное число внутри или снаружи единичной окружности — окружности с центром в начале координат и с радиусом 1 (рис. 35).

Рис. 35. Спирали внутри и снаружи единичной окружности

Умножение и возведение в степень на комплексной плоскости становятся геометрическими идеями, можно видеть, что происходит. Это было вторым большим продвижением вперед.

Человеком, который объединил эти две идеи, был ученик Гаусса Георг Фридрих Бернхард Риман. Риман объединил проективную геометрию с комплексными числами, и неожиданно прямые превратились в окружности, окружности — в прямые, а ноль и бесконечность стали полюсами шара, полного чисел.

Риман представлял себе прозрачный шар на комплексной плоскости; южный полюс шара касался ноля. Если бы на северном полюсе шара был крошечный источник света, все фигуры, отмеченные на шаре, отбрасывали бы тени на лежащую внизу плоскость. Тень экватора образовывала бы окружность вокруг начала координат. Тень южного полушария находится внутри окружности, а тень северного — снаружи (рис. 36). Начало координат — ноль — совпадает с южным полюсом. Каждая точка на шаре имеет тень на комплексной плоскости; в определенном смысле каждая точка на шаре — эквивалент своей тени на плоскости, и наоборот. Каждая окружность на плоскости есть тень окружности на шаре, и окружность на шаре соответствует окружности на плоскости — за одним исключением.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.