Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда Страница 28
- Категория: Научные и научно-популярные книги / Математика
- Автор: Даглас Хофштадтер
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 219
- Добавлено: 2019-02-05 10:40:24
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда» бесплатно полную версию:Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда читать онлайн бесплатно
Это настолько важный момент, что мы остановимся на нем поподробнее. В нашей системе S (включающей систему ur и правила, определяющие теоремы типа S) у нас есть теоремы вида Sx, где x, как обычно, обозначает строчку тире. В ней имеются также не-теоремы вида Sx. Говоря о не-теоремах, я имею в виду именно эту разновидность, хотя, конечно, существует множество не-теорем в виде неправильно сформированных строчек: u u-S r r и пр. Между теоремами и не-теоремами есть следующая разница: количество тире в первых — составное число, во вторых — простое. К тому же, все теоремы похожи по форме, так как все они выведены при помощи одного и того же набора типографских правил. Можем ли мы сказать, что в этом смысле все не-теоремы также имеют что-то общее в форме? Ниже приводится список теорем типа S, без их вывода. Число в скобках указывает на количество тире в соответствующей теореме.
S---- (4)
S------ (6)
S-------- (8)
S--------- (9)
S---------- (10)
S------------ (12)
S-------------- (14)
S--------------- (15)
S---------------- (16)
S------------------ (18)
.
.
.
«Дырки» в этом списке как раз и являются не-теоремами. Есть ли у них какая-то общая «форма»? Можно ли предположить, что лишь постольку, поскольку они являются пробелами в неком упорядоченном списке, они обладают какими-то общими чертами? И да, и нет. Нельзя отрицать, что у них есть общие типографские черты; вопрос в том, правомочно ли называть эти черты «формой». Дело в том, что дырки определены только негативно: они представляют из себя то, что осталось от позитивно определенного списка.
Рисунок и фонЭто напоминает известное разграничение между рисунком и фоном в живописи. Когда предмет или «положительное пространство» (например, человеческая фигура, буква или натюрморт) рисуется внутри рамки, неизбежным следствием этого является появление на картине дополняющей формы, также называющейся «фоном», или «негативным пространством». В большинстве картин отношение между фоном и рисунком почти не играет роли; как правило, художник в основном занят рисунком. Однако иногда его внимание привлекает также и фон.
Существуют замечательные шрифты, обыгрывающие это различие между рисунком и фоном. Послание, написанное таким шрифтом, приводится ниже. На первый взгляд это просто несколько клякс; но если вы посмотрите на них издали, попристальнее, то увидите семь букв на этом РИСУНКЕ (специальным шрифтом, так, что черный фон, создающий белые буквы, похож на кляксы.)
Рис. 15. Рисунок
Такой же эффект производит мой рисунок «Знак из дыма» (рис. 139). Продолжая в том же ключе, попробуйте решить следующую задачку: возможно ли нарисовать такую картину, чтобы слова были как на рисунке, так и в фоне?
Давайте условимся различать между двумя типами рисунков: курсивно рисуемыми и рекурсивными (эти термины не являются общеупотребительными — их придумал я сам). В курсивно рисуемом рисунке фон является лишь побочным продуктом. В рекурсивном рисунке, наоборот, фон может рассматриваться как отдельный самостоятельный рисунок. Обычно художник делает это вполне сознательно. Приставка «ре» здесь выражает тот факт, что как рисунок, гак и фон могут быть нарисованы курсивно, то есть, такая картина «дву-курсивна». Любой контур на рекурсивном рисунке — это обоюдоострый меч. М. К. Эшер был мастером подобных картин; взгляните, например, на его великолепную рекурсивную гравюру «Птицы» (рис. 16).
Рис. 16. M. K. Эшер. «Деление пространства при помощи птиц» (из блокнота 1942 года).
Различие здесь не такое строгое, как в математике; кто может с уверенностью утверждать, что некий фон не является в то же время и рисунком? При достаточно внимательном рассмотрении, любой фон не лишен собственного интереса. В этом смысле любой рисунок можно назвать рекурсивным. Однако, вводя эти термины, я имел в виду нечто другое. Существует естественное, интуитивное понятие узнаваемых форм. Являются ли и рисунок и фон узнаваемыми формами? Если да, то такой рисунок рекурсивен. Посмотрев на фон большинства контурных рисунков, вы обнаружите, что в нем трудно признать какую-либо форму. Это доказывает, что:
Существуют узнаваемые формы, чье негативное пространство не является никакой узнаваемой формой. Или, выражаясь более технично:
Существуют курсивно рисуемые рисунки, которые не рекурсивны.
Рис. 17. Скотт Е. Ким Рисунок «РИСУНОК-РИСУНОК».
На рис. 17 показано решение предложенной выше головоломки, принадлежащее Скотту Киму; я называю это решение «рисунок РИСУНОК — РИСУНОК». На какую бы часть — белую или черную — вы не посмотрели, вы увидите только «ФИГУРЕ» (= английское «РИСУНОК»), и никакого «ФОНА». Великолепный образчик рекурсивного рисунка! Черные области этого хитроумного рисунка можно охарактеризовать двумя способами:
(1) как негативное пространство белых областей;
(2) как видоизмененные копии белых областей (полученные путем их окраски и сдвига каждой белой области).
(В данном случае обе характеристики эквивалентны; для большинства черно-белых рисунков это не так.) В главе VIII, создавая Типографскую Теорию Чисел (ТТЧ), мы будем надеяться, что нам удастся охарактеризовать множество всех ложных утверждений аналогичными способами:
(1) как негативное пространство множества всех теорем ТТЧ;
(2) как модифицированные копии множества всех теорем ТТЧ (полученные путем отрицания каждой теоремы ТТЧ).
Однако этой надежда окажется напрасной, так как:
(1) среди множества всех не-теорем существуют некоторые истинные утверждения;
(2) вне множества всех отрицаний теорем, существуют некоторые ложные утверждения.
Отчего так получается, вы увидите в главе XIV; а пока можете поразмыслить над графическим изображением данной ситуации (Рис. 18).
Рис. 18. Эта диаграмма отношений между различными классами строчек ТТЧ весьма богата зрительным символизмом. Самый большой прямоугольник — множество всех строчек ТТЧ. Следующий прямоугольник — все правильно построенные строчки ТТЧ. Внутри него находится множество всех предложений ТТЧ. Именно на этом уровне начинают происходить интересные вещи. Множество теорем изображено в виде дерева, чей ствол — множество аксиом. Символ дерева был выбран из-за того, что оно растет «рекурсивно» новые ветви (теоремы) вырастают из старых. Пальцеобразные ветви проникают во все уголки области представляющей множество истинных высказываний, однако они не могут занять эту область целиком. Граница между областями истинных и ложных высказываний представляет собой изломанную «береговую линию», которая, как бы близко вы ее не рассматривали, всегда имеет еще более мелкие уровни структуры и таким образом, не поддается описанию каким либо конечным методом (См. книгу Мандельбродта «Фракталы» (В. Mandelbrodt Fractals)). Отраженное дерево справа представляет отрицания теорем все они ложны, но вкупе они не в состоянии заполнить всю область ложных высказываний (Рисунок автора)
Рисунок и фон в музыкеАналогию с понятием рисунка и фона можно также найти и в музыке. Примером может служить различие между мелодией и аккомпанементом: мелодия всегда на первом плане, тогда как аккомпанемент в каком-то смысле второстепенен. Поэтому нам кажется удивительным, когда мы узнаем мелодии на «низшем» уровне музыкального произведения. Для пост-барочной музыки это редкое явление — обычно гармонии там не выходят на первый план. Но в барочной музыке — и прежде всего, у Баха — все уровни «работают» в качестве «рисунка». В этом смысле баховские композиции могут быть названы рекурсивными.
В музыке есть еще одно различие между рисунком и фоном — ударные и безударные такты. Если вы начнете отмечать ритм счетом «раз-и, два-и, три-и…», большинство нот мелодии придутся на числа, а не на «и». Иногда, однако, мелодия бывает нарочно смещена на «и», чем достигается интересный эффект. Это происходит, например, в нескольких фортепианных этюдах Шопена. Тот же прием можно найти у Баха, в особенности, в сонатах и партитурах для скрипки соло и в сюитах для виолончели соло. В этих композициях Баху удается поместить несколько мелодий одновременно на разных уровнях. Иногда он достигает этого эффекта, заставляя солирующий инструмент играть дублировки — две ноты сразу. В других случаях, однако, он помещает один голос на ударные такты, а другой — на безударные, так что слух различает две разные мелодии, вплетающиеся одну в другую и гармонически сочетающиеся. Нет нужды говорить, что Бах не останавливается на этом уровне сложности…
Жалоба
Напишите нам, и мы в срочном порядке примем меры.