Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы Страница 28

Тут можно читать бесплатно Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы

Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы» бесплатно полную версию:
На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы читать онлайн бесплатно

Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы - читать книгу онлайн бесплатно, автор Хавьер Фресан

Пока что мы говорили о сложности задач как о неотъемлемой части их формулировки. Эта точка зрения априори ошибочна, так как сложной или простой является не задача сама по себе, а наш способ ее решения. Возможно, найденное нами решение требует выполнения множества операций, но при этом существует другое, более простое. В этом случае наше решение относится к классу NP, в то время как сама задача — к классу Р. Решение задачи о коммивояжере заключалось в переборе всех возможных маршрутов. Однако в таблице показано, что при смене порядка обхода городов на противоположный длина маршрута не меняется. Следовательно, выбор маршрута Париж — Лондон — Берлин — Рим — Париж ничем не отличается от маршрута Париж — Рим — Берлин — Лондон — Париж, поэтому достаточно рассмотреть половину исходных случаев. На практике подобное упрощение не слишком полезно, так как половина огромного числа по-прежнему остается огромным числом. Этот аспект имеет скорее философский характер: если в первом решении мы упустили из вида столь тривиальную деталь, то сколько подобных моментов мы еще не учли? Мы сказали, что наша исходная точка зрения априори ошибочна, поскольку неизвестно, существуют ли задачи, для которых сложность является неотъемлемым свойством их формулировки, а не решений. К числу таких задач, возможно, относится задача о коммивояжере, пока что никому не удалось доказать, что все ее решения являются сложными.

* * *

Р И NP

Как вы увидели в главе 3, датой символического начала математики XX века считается август 1900 года, когда Гильберт обнародовал свой список из двадцати трех задач на конференции в Париже. Вновь в Париже, но уже сто лет спустя, экспертная комиссия из Института Клэя выбрала семь открытых задач, которые, по ее мнению, обозначили направление математических исследований нового столетия. Четвертая проблема в этом списке, известная как проблема равенства классов Р и NP, заключается как раз в том, чтобы подтвердить, существуют ли задачи класса NP сами по себе или же, напротив, любую задачу, решение которой можно проверить за полиномиальное время, также можно быстро решить, найдя некий хитроумный алгоритм. Того, кто найдет решение этой проблемы, ждет премия в один миллион долларов. Как видите, математика иногда может приносить доход.

* * *

В связи с этим определением сложности возникает еще одно замечание: в подобной трактовке не проводится различие между задачами, для решения которых требуется одинаковое число операций. По нашему определению, запомнить пароль из двенадцати символов — это простая или сложная задача независимо от того, из каких символов состоит пароль, так как для этого неизменно потребуется двенадцать действий: запомнить первый символ, второй, третий и т. д. до двенадцатого.

Однако никто, будучи в здравом уме, не скажет, что запомнить пароли 111111111111 и 6u0yfz3eq85s одинаково просто. Первый пароль можно сжать до слов «12 единиц», а второй пароль можно описать только одним способом — посимвольно. В середине 70-х годов советский математик Андрей Колмогоров на основе этого примера ввел новое определение сложности, предложив заменить число операций на число инструкций. Сложность последовательности символов стала определяться как минимальная длина алгоритма, необходимого для ее генерации.

Представим себе машину Тьюринга, задача которой — записать определенную последовательность нулей и единиц, которую мы назовем s. Как вы увидели из предыдущей главы, машине нужно дать последовательность инструкций вида «Если считано 1, сместиться вправо и перейти к инструкции № 2». В этом упрощенном варианте мы говорим, что сложностью s является натуральное число n, если существует машина Тьюринга, описанная посредством n инструкций, выходным значением которой является s, и если никакая машина не может сгенерировать заданную последовательность за меньшее число инструкций. Таким образом определяется функция К (по первой букве фамилии Колмогорова), которая сопоставляет каждой последовательности нулей и единиц ее сложность. Рассмотрим последовательность 1111… Если подать на вход машины Тьюринга ленту, на которой записаны только нули и единственная инструкция которой гласит «Инструкция № 1: Если считан 0, записать 1 и перейти к инструкции № 1. Если считан 1, сместиться вправо и перейти к инструкции № 1», то в результате мы получим последовательность 1111… Это означает, что заданная последовательность имеет минимально возможную сложность К(s) = 1, так как для ее описания достаточно единственной инструкции.

Живительное следствие этого определения сложности состоит в том, что компьютеры не могут генерировать бесконечные случайные последовательности нулей и единиц. Интуитивно понятно, что последовательность является случайной, когда невозможно предсказать, каким будет ее следующий элемент. Это означает, что описание случайной последовательности не может быть короче, чем сама последовательность.

Иными словами, ее сложность бесконечно велика. Однако все компьютерные программы содержат конечное число инструкций (вспомните определение машины Тьюринга из предыдущей главы). Следовательно, генерируемые ими последовательности нулей и единиц, сколь случайными бы они ни казались, всегда будут иметь конечную сложность. Компьютеры могут воспроизводить только псевдослучайные последовательности, поэтому для генерирования истинно случайных последовательностей многие физики пытаются использовать недетерминированность атомов.

С другой стороны, определение сложности по Колмогорову во многом схоже с парадоксом библиотекаря, о котором мы рассказали в конце главы 2, где рассматривается множество натуральных чисел, которые можно описать пятнадцатью словами. Так как число фраз, состоящих из пятнадцати слов, является конечным, множество таких чисел также будет конечным. Следовательно, среди всех чисел, не принадлежащих этому множеству, можно определить наименьшее. Обозначим его за n. Однако в этом случае n будет «наименьшим числом, которое нельзя описать менее чем пятнадцатью словами» — это описание содержит всего девять слов!

Логично задаться вопросом, не приведет ли введенное нами определение сложности к противоречиям. Ответ удивляет: если бы функция К была вычислимой, то есть если бы существовала машина Тьюринга, способная вычислить для данной последовательности нулей и единиц s сложность К(s), то рассуждения, аналогичные тем, что мы использовали при решении проблемы остановки, позволили бы воспроизвести парадокс библиотекаря на формальном языке арифметики. Следовательно, единственно возможный ответ таков: сложность не является вычислимой, и этого достаточно для разрешения парадокса библиотекаря, который оставался открытым: выражение «описать пятнадцатью словами» некорректно, так как принадлежит не к языку, а к метаязыку.

Гёдель, Тьюринг и искусственный интеллект

На предыдущих страницах мы ограничились обсуждением приятия сложности исключительно с точки зрения математики, и читатель убедился, что определение этого понятия сопряжено с многочисленными трудностями. Наша изначальная цель была еще более амбициозной: мы хотели узнать, как измеряется сложность понятий «любовь» и «справедливость». Постепенно все новые и новые математические открытия вдохновили исследователей на создание новой теории сложности, которую можно обобщить фразой «целое больше, чем сумма его частей». Слова «сияние», «рана», «солнце» и «ближайший» имеют четкие значения — мы можем узнать их в словаре. Но когда французский поэт Рене Шар пишет «Сияние — рана, ближайшая к солнцу», из четырех прекрасно знакомых нам слов рождается нечто новое.

Стих представляет собой нечто большее, чем сумму слов, поэтому понять поэзию непросто.

Эта эмерджентность присуща не только языку — она характерна для так называемых общественных насекомых, с ее помощью объясняется успех интернета, и она является одним из ключей к изучению нервных систем живых существ. Представим себе, например, крохотного муравья, который в поисках пищи следует алгоритмам, заложенным в его генах. Мы никогда не смогли бы понять сложную организацию муравейника, способного приспосабливаться к экстремальным ситуациям, если бы рассматривали его исключительно как совокупность отдельных муравьев. Иммунная система также представляет собой нечто большее, чем совокупность клеток, экономика есть нечто большее, чем множество покупателей акций, а интернет — это нечто большее, чем сумма отдельных действий пользователей из разных уголков планеты. Понять, каким образом из относительной простоты отдельных компонентов этих систем возникает сложное единое целое — одна из величайших задач науки начала нынешнего столетия.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.