Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления Страница 3

Тут можно читать бесплатно Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления

Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления» бесплатно полную версию:
Алгоритмы управляют работой окружающих нас электронных устройств, благодаря которым становится возможным существование нашего удивительного цифрового мира.По сути, компьютерная программа — не более чем алгоритм, составленный на языке, понятном компьютеру. Однако царствование алгоритмов в вычислительной технике — лишь краткий эпизод долгой и интересной истории, которая началась вместе с зарождением вычислений. В этой книге рассказывается история алгоритмов, а также описываются важнейшие особенности вычислений и вычислительной техники, начиная от первых счетных палочек и заканчивая компьютерами, без которых невозможно представить современный мир.

Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления читать онлайн бесплатно

Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления - читать книгу онлайн бесплатно, автор Бизенц Торра

* * *

ПРИМЕТЫ ДРЕВНОСТИ

Возможно, читатель уже обратил внимание, что шестидесятеричная система счисления вовсе не похоронена в песках Ближнего Востока, а присутствует в нашей повседневной жизни, поскольку мы используем ее ежедневно и даже ежеминутно, когда смотрим на часы. При отсчете времени мы используем систему счисления по основанию 60. Вавилоняне делили сутки на 24 часа, час — на 60 минут, минуту — на 60 секунд. Аналогичная система используется и при измерении углов. Она также была введена вавилонянами и сохранилась до наших дней.

Астрономические часы в итальянском городе Брешиа.

* * *

Однако позиционная система счисления обладает одним недостатком: в ней нужно как-то представить отсутствие значения. В эпоху, когда ноль был неизвестен, устранить это неудобство было не так-то просто. Для обозначения разряда, не содержащего значение, вавилоняне использовали определенный символ. Позднее, примерно в 130 году в Александрии Птолемей использовал для этих целей омикрон — пятнадцатую букву греческого алфавита, внешне напоминающую современную букву О.

В вавилонской системе счисления сохранились связи с пиктографическим письмом, которое бытовало в прошлом и повлияло на внешний облик символов для обозначения цифр. В Вавилоне существовали архаичные и примитивные, но очень эффективные счетные машины. Принцип их действия базировался на размещении в определенном порядке различных предметов, соответствовавших величинам: один предмет обозначал единицу, другой — десяток, третий — шестьдесят и так далее.

Таким образом можно было совершать сравнительно сложные вычисления, достаточные для практических нужд. Судя по всему, символы первой письменной нотации напоминали очертания этих предметов.

Эта теория подтверждается различными открытиями. С начала раскопок дворца Нузи в 1896 году в 90 километрах от Тигра, вблизи современного иракского города Киркук было найдено 5000 клинописных табличек XV и XIV века до н. э. и 200 более древних — XXIV и XXIII века до н. э. Во дворце также был найден глиняный сосуд яйцевидной формы, внутри которого находился ряд одинаковых фигур сферической формы. На сосуде была сделана надпись, обозначавшая количество голов скота.

Знаменитая табличка Плимптон 322, созданная в период с 1824 по 1784 год до н. э., содержит ряд чисел в шестидесятеричной системе счисления, записанных в четыре столбца.

Ровно столько же глиняных фигурок находилось внутри сосуда. В Сузах, городе, который располагался на территории современного Ирана и считается одним из старейших городов мира, были найдены глиняные сосуды с надписями, внутри которых находились различные диски, конусы, шарики и палочки. Когда значение надписей было расшифровано, стало понятно, что они соответствуют определенным числам.

Вавилонская система исчисления была очень развитой. В этом можно убедиться на примере множества табличек, где записана различная информация, связанная с математикой. На многих из них изображены таблицы с числами. Были найдены таблицы умножения, возведения в квадрат и куб, а также таблицы обратных чисел. В некоторых таблицах обратных чисел отсутствуют обратные числа для 7 и 11, которые в системе счисления по основанию 60 записываются бесконечным числом знаков. В других таблицах приводятся приближенные значения этих чисел, большие или меньшие истинных значений. На некоторых были записаны таблицы квадратных корней и степеней чисел. Считается, что таблицы степеней использовались для расчетов логарифмов. Если в таблице не приводилось число, обратное заданному, оно вычислялось с помощью линейной интерполяции чисел, содержащихся в таблице.

Далее приведена таблица умножения на 9, записанная на глиняной табличке, найденной в Ниппуре, которая в настоящее время хранится в Иенском университете. Числа, зафиксированные на табличке, перевела в современную систему счисления историк математики и науки Кристин Пруст. Эта таблица обладает интересными свойствами.

Например, число (1,3), соответствующее умножению 9·7, понимается как 1·60 + 3 = 63; число (7, 30), которому соответствует 9·50, понимается как 7·60 + 30 = 420 + 30 = 450.

В следующем примере, также адаптированном госпожой Пруст, приведена таблица обратных чисел с еще одной таблички, найденной в Ниппуре. В этой таблице 20 означает 20·60-1 = 20/60 = 1/3.

Для вычисления квадратного корня вавилоняне использовали алгоритмический метод, известный в наше время как метод бисекции. Его авторство приписывается многим философам и математикам, среди которых Архит Тарентский и Герон Александрийский. Этот метод также упоминается как метод Ньютона, однако достоверно известно, что его использовали вавилоняне.

Для данного числа N, из которого мы хотим извлечь квадратный корень, находится два приближенных значения а1 и Ь1 квадрат одного из которых больше N, другого — меньше. Далее рассчитывается значение а2 = (a1 + b1)/2, после чего его квадрат сравнивается с N. Если он больше N, то а2 заменяет прежнее значение, большее N. Если же он меньше N, а2  заменяет меньшее из значений. Этот процесс повторяется до тех пор, пока не будет найдено число, квадрат которого точно или с достаточной точностью равен N.

Вавилоняне также умели решать системы уравнений и уравнения второй степени с вещественными корнями. Эти задачи упоминаются в текстах, датируемых примерно 2000 годом до н. э. «Протоматематики» Вавилонии также умели решать некоторые уравнения третьей степени. Уравнения вида x3 = а или х3  + х2 = с решались с помощью таблиц. Более сложные уравнения, имевшие вид ах3 + Ьх2 = с, сводились к уравнениям первых двух видов.

Анализ вавилонских текстов показывает, что математика была для вавилонян не просто средством решения практических задач. В этом заключается ее фундаментальное отличие от древнеегипетской математики, которая считалась намного более утилитарной. Вавилоняне достигли значительных успехов в арифметике и алгебре, но в отличие от египтян не преуспели в геометрии. Знания геометрии в Вавилонии касались лишь немногих фигур, в частности треугольников и четырехугольников.

* * *

УРАВНЕНИЯ ВТОРОЙ И ТРЕТЬЕЙ СТЕПЕНИ

Уравнения второй степени вида ах2 + Ьх + с = 0 обычно решаются с помощью формулы

Эта формула позволяет получить вещественные решения, когда дискриминант положителен или равен нулю, то есть выражение Ь2 4ас больше либо равно нулю.

Для решения уравнений вида ах3 + Ьх2 = с вавилоняне умножали уравнение на (а2/Ь3) и получали уравнение вида (ах/b)3 + (ах/b)2 = са2/Ь3 Оно решалось с помощью таблиц для уравнений вида х3 + х2 = с, после чего рассчитывалось значение х.

* * *

Однако труды вавилонян, посвященные окружностям, сохранились до наших дней. Именно вавилоняне разделили окружность на шесть частей построением окружностей радиуса, равного радиусу исходной окружности. Каждая из этих частей делилась на 60; таким образом, вся окружность делилась на 360 градусов. Так как использовалась шести десятеричная система, то градусы делились на 60 минут, минуты — на 60 секунд. В качестве приближенного значения π использовалось значение π = 3, хотя в табличке, найденной в Сузах, путем сравнения периметра шестиугольника и длины окружности получено значение π = 31/8.

Построение шестиугольника, вписанного в окружность. Сторона шестиугольника равна радиусу окружности.

Вычисления в Древнем Египте

В древнеегипетской системе счисления для степеней десяти использовались отдельные символы. Так, существовали особые символы для единиц, десятков, сотен и так далее.

Египетская система счисления, в отличие от вавилонской, не была позиционной. Далее мы продемонстрируем иероглифы, соответствующие наиболее часто используемым числам.

Египетская система счисления была аддитивной, в отличие от нашей системы счисления, которая, подобно вавилонской, является позиционной. В аддитивной системе счисления, например, число 3204 представляется в виде 1000 + 1000 + 1000 + 100 + 100 + 1 + 1 + 1 + 1. В виде египетских иероглифов оно записывается так:

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.