Генри Дьюдени - Пятьсот двадцать головоломок Страница 31
- Категория: Научные и научно-популярные книги / Математика
- Автор: Генри Дьюдени
- Год выпуска: -
- ISBN: нет данных
- Издательство: -
- Страниц: 62
- Добавлено: 2019-02-05 10:36:17
Генри Дьюдени - Пятьсот двадцать головоломок краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Генри Дьюдени - Пятьсот двадцать головоломок» бесплатно полную версию:Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
Генри Дьюдени - Пятьсот двадцать головоломок читать онлайн бесплатно
474. Квадраты из домино. Составьте из 28 костяшек домино 2 квадрата, как показано на рисунке, чтобы суммы очков вдоль каждой из 8 сторон совпали.
Значение сумм должно быть таким, чтобы головоломка оказалась разрешимой; кроме того, было бы интересно найти пределы, в которых может меняться это значение. Разумеется, мы не обязаны прикладывать костяшки друг к другу согласно обычному правилу — 6 к 6, пустышка к пустышке и т. д.
475. Умножение домино. Четыре костяшки домино можно расположить таким образом, чтобы получилось умножение столбиком, если очки рассматривать как цифры. Головоломка состоит в том, чтобы из 28 костяшек составить 7 таких «столбиков».
Оказывается, сравнительно легко составить 6 столбиков, но с оставшимися четырьмя костяшками ничего не удается сделать. Однако головоломка имеет решение, а его поиски доставят вам удовольствие. Пустышку не разрешается помещать слева ни в произведении, ни в множимом.
476. Прямоугольник из домино. Вот одна, как мне кажется, довольно занимательная головоломка с домино. Расположите 28 костяшек, как показано на рисунке, где очки не указаны, чтобы при этом сумма очков в каждом столбце равнялась 24, а в каждой строке — 21. Костяшки не обязательно прикладывать 6 к 6, 4 к 4 и т. д.
477. Столбик из домино. Расположите 28 костяшек домино в столбик, как показано на рисунке, таким образом, чтобы три произвольных идущих подряд множества очков давали слева и справа одинаковую сумму. Так, в нашем примере три верхних множества дают сумму 9 на обеих сторонах, сумма следующих трех равна 7 на обеих сторонах и т. д. Однако это всего лишь пример одного из участков подходящего столбика, и вы, если захотите, можете начать все заново.
478. Выстраивание домино. Однажды кто-то напомнил профессору Рэкбрейну о том, что он обещал сказать, сколькими способами можно расположить 28 костяшек домино в одну линию в соответствии с обычным правилом игры, если расположения слева направо и справа налево считать различными. Через некоторое время он сообщил, что таких способов 7 959 229 931 520, и добавил, что эта задача очень сложна.
Затем профессор предложил присутствующим решить аналогичную задачу для 15 костяшек (которые остаются после удаления всех костяшек с пятью или шестью очками), причем две цепочки домино, получающиеся из одной и той же цепочки при «чтении» ее один раз слева направо, а другой справа налево, считаются различными. Разумеется, и в этом случае костяшки следует располагать по обычным правилам: 1 к 1, 6 к 6 и т. д.
Головоломки со спичками
479. Головоломка со спичками. Взяв коробок спичек, я обнаружил, что могу составить из них любую пару правильных многоугольников, изображенных на нашем рисунке, причем на это каждый раз уходят все спички. Так, если бы у меня было 11 спичек, я мог бы из них составить, как показано, либо треугольник и пятиугольник, либо пятиугольник и шестиугольник, либо квадрат и треугольник (израсходовав на треугольник только 3 спички); но из 11 спичек нельзя составить ни треугольник с шестиугольником, ни квадрат с пятиугольником, ни квадрат с шестиугольником. Разумеется, на каждую сторону фигуры должно пойти одинаковое количество спичек.
Какое наименьшее число спичек может быть у меня в коробке?
480. Овцы и изгороди. Вот еще одна небольшая головоломка, для решения которой могут пригодиться спички. Некий фермер утверждает, что с помощью четырех жердей он может огородить квадратный участок, достаточный как раз для одной овцы. Если это и в самом деле так, то какое минимальное число жердей пойдет на загородку для десяти овец? Все зависит от формы вашей изгороди. По-другому расположить четыре спички (или жерди) вы можете только в виде ромба, и, чем более вытянутым будет этот ромб, тем меньшую площадь он будет огораживать, пока наконец после совмещения сторон огороженная площадь не обратится в нуль.
Если вы расположите шесть спичек, как в случае В, то огородите при этом участок для двух овец. Но если вы расположите их, как в случае С, то соответствующий участок подойдет только для одной овцы, поскольку овцы можно получить лишь в виде баранины. Если же вы расположите их, как в случае D, то снова в полученную загородку сможете поместить только двух овец (максимальное число в случае шести жердей).
Сколько жердей требуется для 10 овец?
481. Двадцать спичек. На помещенном здесь рисунке показано, как можно из 20 спичек, разделенных на две группы (по 14 и 6 спичек соответственно), составить ограды для двух участков, из которых первый имеет ровно в 3 раза большую площадь, чем второй. Разделите теперь 20 спичек на две группы по 13 и 7 штук соответственно и снова огородите с их помощью два участка, у которых площадь первого была бы ровно в 3 раза больше площади второго.
482. Еще одна головоломка со спичками. Шестнадцать квадратов шахматной доски окружены 16 спичками. Требуется положить нечетное число спичек внутрь получившегося большого квадрата так, чтобы окружить 4 группы по 4 квадрата в каждой. Совершенно очевидно, как это можно сделать с помощью 8, 10 или 12 спичек, но эти числа четные.
Быть может, читателю понадобится всего лишь несколько минут для того, чтобы найти 4 различных решения (решения, переходящие друг в друга при поворотах и отражениях, не считаются различными) с нечетным числом спичек. Разумеется, не разрешается класть две спички на одну и ту же сторону.
483. Хитроумная головоломка со спичками. Положите 6 спичек, как показано на рисунке, и затем передвиньте одну из них, не касаясь остальных, так, чтобы получилась арифметическая дробь, равная 1. Спичку, изображающую горизонтальную черту дроби, трогать нельзя.
484. Нуль из пятидесяти семи. После предыдущей головоломки данная покажется совсем простой.
На нашем рисунке вы видите 6 сигарет (спички тоже вполне подойдут), которые расположены таким образом, что изображают число 57. Головоломка состоит в том, чтобы, переместив две из них и не сдвигая остальных, получить 0. Помните, что вы можете передвинуть только две сигареты. Существуют два совершенно различных решения.
Можете ли вы найти одно из них или даже оба?
485. Пять квадратов. Вот еще одна несложная головоломка со спичками, которая озадачит очень многих читателей, хотя они и рассмеются, узнав ответ.
Вы видите на рисунке, как из 12 спичек составлены 4 квадрата. Можете ли вы расположить те же 12 спичек (все спички должны лежать плашмя на столе) так, чтобы они ограничивали 5 квадратов?
Каждый квадрат должен быть «пуст», в противном случае квадраты, изображенные на рисунке, могли бы служить решением, поскольку в качестве пятого мы могли бы взять большой квадрат. Не разрешается ни укладывать две спички одна на другую, ни оставлять свободные концы.
486. Фокус со спичками. Как-то, приоткрыв спичечный коробок, я показал своим друзьям, что в нем только около дюжины спичек. Открыл я его так, что не было видно ни одной головки — все головки находились в закрытом конце коробка. Затем, закрыв коробок на глазах у всех, я сказал, что встряхну его, а потом открою снова, при этом одна спичка перевернется так, что станет видна ее головка. Так я и поступил, а зрители сразу же проверили, что все спички целы. Как мне удалось это сделать?
487. В три раза больше. Выложите на стол 20 спичек, как показано на рисунке. Можно заметить, что 2 группы из 6 и 14 спичек ограничивают 2 фигуры, площадь одной из которых ровно в 3 раза больше площади другой.
Теперь возьмите одну спичку в большой группе, переложите ее в меньшую и с помощью 7 и 13 спичек ограничьте снова 2 фигуры, из которых площадь одной была бы ровно в 3 раза больше площади другой. Двенадцать спичек должны остаться на своих местах, а кроме того, нельзя дублировать спички и оставлять свободные концы. Пунктиром отмечены соответствующие площади.
488. Фигура с шестью сторонами. Вы видите на рисунке правильный шестиугольник, составленный из 6 спичек. Можете ли вы, добавив 3 спички, изобразить с помощью 9 полученных спичек другую правильную фигуру с шестью сторонами? Не разрешается укладывать 2 спички одна на другую и оставлять свободные концы.
489. Двадцать шесть спичек. Набросайте диаграмму, подобную изображенной на нашем рисунке, где сторона каждого маленького квадрата имеет длину в одну спичку, и поместите звездочки и крестики на указанные места.
Требуется разместить 26 спичек вдоль линий таким образом, чтобы они разделяли весь чертеж на две части одинаковых размеров и одной формы, причем в одной из них должны находиться две звездочки, а в другой — два крестика.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.