Борис Бирюков - Жар холодных числ и пафос бесстрастной логики Страница 33

Тут можно читать бесплатно Борис Бирюков - Жар холодных числ и пафос бесстрастной логики. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Борис Бирюков - Жар холодных числ и пафос бесстрастной логики краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Борис Бирюков - Жар холодных числ и пафос бесстрастной логики» бесплатно полную версию:
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.

Борис Бирюков - Жар холодных числ и пафос бесстрастной логики читать онлайн бесплатно

Борис Бирюков - Жар холодных числ и пафос бесстрастной логики - читать книгу онлайн бесплатно, автор Борис Бирюков

(2) стереть знак, напечатанный в обозреваемой ею ячейке ленты, напечатать вместо него другой или оставить знак без изменения;

(3) передвинуть бумажную ленту на стандартное расстояние (скажем, на 1 см), соответствующее размеру ячейки, в левую или в правую сторону;

(4) остановиться (например, отключиться от сети, если она электрическая); остановку машины можно понимать как ее переход в особое — заключительное — состояние.

Больше ничего машина Тьюринга делать не способна.

Перед началом работы машины Тьюринга на ее ленту каким-либо образом наносятся знаки из внешнего алфавита; образующиеся в результате этого конфигурации знаков следует рассматривать как исходную информацию, подлежащую переработке данной машиной. Машина обладает активным органом: считывающе-записывающей головкой, которая перед началом работы устанавливается ровно против одной из ячеек ленты. Про эту ячейку тогда говорят, что она обозревается машиной. Работа машины — изменение ею конфигурации знаков на ленте, обозревание все новых и новых (в общем случае) ячеек и переход из одного состояния в другое — происходит в дискретном времени: по тактам. На каждом из них ее поведение определяется двумя факторами — знаком, воспринимаемым на обозреваемой ячейке, и внутренним состоянием машины. Само же поведение складывается из двух действий; одно из них соответствует пункту (2) или (3), другое — пункту (1) или (4). Если, действуя в соответствии с пунктом (3), машина сдвинет ленту до самого ее конца, то считается, что она включает некое устройство подклейки нового куска ленты. Таким образом, лента машины мыслится потенциально бесконечной в обе стороны, в чем состоит существенная связанная с этой машиной идеализацией, именно поэтому машину Тьюринга называют абстрактной машиной.

В том, что каждое действие машины строго однозначно определяется ее внутренним состоянием и тем знаком, который она обозревает, состоит жесткая детерминистичность ее поведения. Однако эта детерминистичность, так сказать, минимальна: только два фактора влияют на ее поведение да каждом такте работы — текущее внутреннее состояние и воспринимаемый знак на ленте — и оно не зависит от истории машины: от ее прошлых состояний. Иными словами, машина Тьюринга ничего не помнит. В этом отношении ее поведение является воплощением «механичности», «слепого автоматизма».

Представим себе, что на ячейках ленты нанесено какое-то (конечное) число непустых знаков, машина приведена в некоторое исходное внутреннее состояние и нацелена на самый левый непустой знак ленты. Проследим, как может развиваться работа машины. Распознав показанный ей знак, машина произведет элементарное действие, которое определяется этим знаком и ее внутренним состоянием. Возможно, этим действием будет остановка машины. Тогда конфигурация, начертанная на ленте, останется без изменений. Возможно, что она сотрет знак и напишет на этом месте другой знак. Возможно, что при этом она перейдет еще и в новое внутреннее состояние. Тогда на следующей фазе работы она будет обозревать (старый или новый) знак уже в новом состоянии и, следовательно, в общем случае выполнит другое действие. Машина, наконец, может остановиться; если это произойдет, то считается, что напечатанная на ленте конфигурация есть результат переработки машиной первоначальной конфигурации. Но машина может и не остановиться, а работать неограниченно долго. В этом случае считается, что процесс переработки исходной конфигурации не дает результата. Весь описанный сейчас процесс вполне механичен и на всех своих этапах элементарно прост, обозрим и ясен. Но насколько богаты возможности машины Тьюринга, сколь широкий круг преобразований могут выполнять подобные машины?

Ответ на этот вопрос дает тезис Тьюринга. Вот его возможная формулировка: «Вычислимым является тот, и только тот, объект, который может быть получен с помощью некоторой машины Тьюринга».

На этот раз объектами — и теми, которые задаются в качестве исходных, и теми, которые вычисляются, являются непосредственно уже не числа, а некоторые слова: конфигурации из стандартных символов, или знаков некоторого алфавита. Но что препятствует отождествлять числа с их знаковыми кодами — с их записью, например, в обычной системе счисления или со словами из вертикальных палочек? Такой подход тем более естествен, что речь идет о передаче вычислительных операций машине, которая «понимает» только знаки. Машина Тьюринга может перерабатывать слова, являющиеся кодами чисел, в частности, осуществлять операции, выполняемые рекурсивными функциями, принятыми за исходные, следовательно, может успешно работать в качестве «арифметической машины».

Раз мы не смотрим на машину Тьюринга как на конструкцию «в металле», мы должны описать схему ее работы таким способом, чтобы не возникало неоднозначностей в понимании и трудностей в ее анализе. Для этого надо задать программу тьюринговой машины, в которой будет указано, какие акты поведения соответствуют каждой возможной паре «обозреваемый знак — внутреннее состояние». Такая программа может строиться следующим образом. Поскольку внутренних состояний и типов знаков конечное число, мы можем выписать столбец всех пар «внутреннее состояние — знак». Число этих пар равно произведению числа внутренних состояний на число знаков алфавита, включая пустой знак. Против каждой из пар выпишем другую пару:

обозначение того механического действия, которое должна произвести машина, и того (нового) внутреннего состояния, в которое она должна перейти. Возникший таким образом список четверок и будет программой некоторой машины Тьюринга. Опираясь на него, можно имитировать работу машины для каждой конфигурации на ленте.

Пусть внешний алфавит состоит из пустого знака и вертикальной палочки |. В качестве «заменителя» пустого знака мы будем использовать знак X. Обозначим сдвиг ленты на одну ячейку влево (который можно трактовать и как сдвиг головки машины по ленте вправо) символом П; сдвиг ленты вправо (то есть движение головки по ленте влево) — символом Л; внутренние состояния обозначим через С1, С2, ..., Сk, причем С1 будет использоваться для исходного состояния, а Сk — для конечного, то есть такого, в котором машина оказывается после остановки (когда с ленты считывается результат ее работы). Условимся считать, что если машина не меняет символа, находящегося в обозреваемой ячейке, то она стирает его и затем записывает снова в той же ячейке (за один такт). Примем также, что в начале своей работы машина «нацелена» на самый левый знак, нанесенный на ее ленте. После этих соглашений можно приступить к рассмотрению конкретных машин Тьюринга.

1. Конфигурация на ленте представлена следующим расположением вертикальных палочек:

... X X X | | | | | ... | | | | | X X X ...

(сплошной массив из произвольного конечного числа палочек, справа и слева от которого неограниченно простираются пустые ячейки). Программа машины состоит из единственной четверки (команды программы):

С1 | | Сk

(четверки, до которых при переработке заданной конфигурации дело заведомо дойти не может, обычно не выписывают).

Вначале машина нацелена на самую левую палочку. Внутреннее состояние машины в начальный момент есть С1 поэтому данная четверка как раз и дает информацию о действии машины. Как видно из структуры четверки, машина должна стереть единицу и вновь ее восстановить, а затем перейти в состояние Сk, то есть остановиться. Понятно, что конфигурация, написанная на ленте, при этом не изменится; это верно для любого количества палочек. Это — пример «тождественной» машины Тьюринга.

2. Алфавит тот же, исходное слово то же. Программа машины представляет собой список из двух команд:

С1 Х Х Сk

С1 | Х С1

(и здесь — как и в дальнейших примерах — четверки, до использования которых дело не дойдет, опускаются). Как произойдет первый такт работы машины, указывает вторая команда, поскольку в ее левой части стоят как раз те параметры, которые характеризуют исходную ситуацию. Выполняя эту команду, машина сотрет палочку и сохранит прежнее внутреннее состояние С1. В следующем такте она воспримет пустую ячейку, оставит ее пустой и «отключится». Если отождествить слово из n палочек (n = 1, 2,...) с числом n, то становится ясным, что машина Тьюринга с такой программой осуществляет не что иное, как вычитание Единицы из любого числа, отличного от нуля. Если же предьявить ей пустую ленту, то машина выключится сразу.

3. Исходная конфигурация та же. Программа машины Тьюринга задается списком команд:

C1 Х Х Ck

C1 | X C2

С2 X П С1

Первый такт определится второй командой. Машина сотрет левую палочку и перейдет в новое состояние С2. Восприняв в этом состоянии пустую ячейку (в ней на предыдущем такте был стерт знак|), она сдвинет считывающе-записывающую головку по ленте вправо и вновь перейду в состояние С1. Такое стирание и передвижение вправо будет повторяться до тех пор, пока в состоянии С1 машина не увидит пустую ячейку (это случится, когда палочки будут исчерпаны). Тогда машина остановится. Если ленту, состоящую из одних пустых ячеек, отождествить с нулем, то можно считать, что машина с такой программой осуществляет ту же операцию, что и рекурсивная функция N1 (х), но только над положительными целыми числами: если на ленте помещен единственный массив из n палочек, то машина перерабатывает ленту с такой конфигурацией в пустую ленту.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.