Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда Страница 34

Тут можно читать бесплатно Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда» бесплатно полную версию:
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда читать онлайн бесплатно

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать книгу онлайн бесплатно, автор Даглас Хофштадтер

Несмотря на мои попытки застать вас врасплох и сбить с толку, этот урок по интерпретации символов при помощи слов, возможно, не показался вам слишком трудным, как только вы поняли, в чем тут дело. Действительно, это несложно. Однако это было одним из глубочайших прозрений математики девятнадцатого века! Все началось с Эвклида, который около 300 года до нашей эры собрал и систематизировал все, что было известно о геометрии в то время. Получившийся труд оказался таким солидным, что в течение более чем двух тысячелетий он практически считался библией геометрии — одна из наиболее «долголетних» работ! Почему так получилось?

Основная причина в том, что Эвклид был основоположником строгости в математических рассуждениях. Его «Элементы» начинаются с простых понятий, определений и так далее; при этом постепенно накапливается множество результатов, организованных таким образом, что каждый данный результат строго основан на предыдущих. В результате, работа имела определенный план, архитектуру, делавшую ее мощной и прочной.

Однако эта архитектура весьма отличалась от, скажем, архитектуры небоскреба. (См. рис. 21.) В последнем случае, сам факт того, что небоскреб стоит и не падает, доказывает, что его структура «правильна». С другой стороны, в книге по геометрии, где предполагается, что каждое утверждение логически следует из предыдущих, одно ошибочное доказательство не вызовет видимого краха всей структуры. Перекладины и подпорки здесь не физические, а абстрактные. На самом деле, в Эвклидовых «Элементах» доказательства были построены из весьма капризного материала, полного скрытых ловушек. Этим материалом был человеческий язык. Как же в таком случае быть с архитектурной мощью «Элементов»? Верно ли, что они основаны на прочной структуре, или же в ней есть некие изъяны?

Рис. 21. М. К. Эшер «Вавилонская башня» (гравюра на дереве, 1928)

Каждое слово, которое мы произносим, имеет определенный смысл, диктующий нам, как это слово использовать. Чем обычнее слово, тем больше ассоциаций связано с ним и тем глубже укоренилось в нас его значение. Таким образом, когда кто-то пытается дать определение какому-либо употребительному слову, в надежде на то, что все мы с этим определением согласимся, обычно происходит следующее: вместо того, чтобы принять данное нам определение, мы, по большей части бессознательно, предпочитаем руководствоваться ассоциациями, хранящимися на «складе» нашего мозга. Я упоминаю об этом потому, что именно с такой проблемой столкнулся Эвклид, пытаясь дать определения таких обыденных слов как «точка», «прямая линия», «круг» и так далее. Как можно определить нечто, о чем у каждого уже есть вполне сформировавшаяся идея? Единственный способ заключается в том, чтобы указать, что ваше слово — технический термин, который не должно путать с обычным, повседневным словом. Необходимо подчеркнуть, что связь с обычным значением слова здесь лишь кажущаяся. Эвклид этого не сделал, так как он был убежден в том, что точки и прямые в его «Элементах» были, на самом деле, точками и прямыми реального мира. Эвклид не предостерег читателей от ложных ассоциаций, тем самым пригласив их к свободной игре воображения…

Это звучит почти анархично и, пожалуй, немного несправедливо по отношению к Эвклиду — ведь он установил аксиомы или постулаты, которые должны были использоваться при доказательстве утверждений. На самом деле, он считал, что доказательства должны были быть основаны исключительно на этих аксиомах и постулатах. К несчастью, именно здесь и случилась осечка! Неизбежным следствием использования ординарных слов явилось то, что некоторые вызванные этими словами ассоциации проникли и в Эвклидовы доказательства. Однако не думайте, что, читая «Элементы», вы найдете там зияющие «провалы» в рассуждениях. Напротив, ошибки там почти незаметны, поскольку Эвклид был слишком глубоким и проницательным мыслителем, чтобы допускать элементарные промахи. Тем не менее, в его рассуждениях все-таки есть «прорехи» — небольшие дефекты в классическом труде. Однако вместо того, чтобы жаловаться, мы можем выучить кое-что новое о разнице между абсолютной и относительной строгостью математических рассуждений. На самом деле, именно отсутствие абсолютной строгости в работе Эвклида явилось причиной многих плодотворных открытий в математике более чем через две тысячи лет после того, как он написал свой труд.

Эвклид привел пять постулатов, легших в фундамент бесконечного небоскреба геометрии (Эвклидовы «Элементы» составили лишь первые несколько сотен этажей этого небоскреба). Четыре первые постулата кратки и элегантны:

(1) Любые две точки могут быть соединены отрезком прямой;

(2) Любой отрезок прямой может быть продолжен бесконечно и превращен в прямую линию;

(3) На основе любого отрезка прямой можно нарисовать круг, принимая этот отрезок за радиус и один из его концов — за центр круга;

(4) Все прямые углы конгруэнтны.

Пятый постулат далеко не так грациозен:

(5) Если две прямые пересекают третью так, что сумма внутренних углов с одной стороны меньше двух прямых углов, то это прямые рано или неизбежно пересекутся на этой стороне.

Хотя Эвклид нигде не сказал об этом прямо, он считал свой пятый постулат в каком-то смысле хуже других, поскольку он нигде не использовал его в доказательстве первых двадцати восьми утверждений. Таким образом, мы можем сказать, что эти утверждения составляют так называемую «геометрию четырех постулатов» — ту часть геометрии, которая может быть выведена на основе первых четырех постулатов «Элементов», без помощи пятого. (Ее также часто называют абсолютной геометрией.) Безусловно, Эвклид предпочел бы найти доказательство этого «гадкого утенка», но за неимением такового, утенка пришлось принять на веру…

Ученики Эвклида также были не в восторге от пятого постулата. В течение многих лет несказанное количество математиков посвящало несказанное число лет своей жизни попыткам доказать, что сам пятый постулат — всего лишь часть геометрии четырех постулатов. К 1763 году были опубликованы по крайней мере двадцать восемь доказательств — и все ошибочные! (Они были раскритикованы в диссертации некоего Г. С. Клюгеля.) Во всех этих ошибочных доказательствах присутствовала путаница между повседневной интуицией и строго формальными свойствами. Пожалуй, можно сказать, что на сегодняшний день эти «доказательства» не представляют интереса ни для математиков, ни для историков; однако имеются и некоторые исключения.

Многоликий Неэвклид

Во времена Баха жил некий Джироламо Саккери 1667-1733), питавший надежду освободить труд Эвклида от всех его недостатков. Основываясь на своих работах в области логики, он решил подойти к доказательству пятого постулата по-новому: предположим, что мы принимаем за истинное утверждение, обратное данному постулату. Теперь попробуем работать с этим утверждением в качестве пятого постулата. Через некоторое время мы наверняка придем к противоречию. Поскольку никакая математическая система не может содержать противоречия, тем самым мы докажем несостоятельность нашего пятого постулата — а следовательно, состоятельность пятого постулата Эвклида. Необязательно вдаваться в подробности истории; достаточно сказать, что Саккери с большой изобретательностью начал работать над «Саккерианской геометрией», выводя одно утверждение за другим, пока ему не надоело. В один прекрасный день он решил, что очередное выведенное им утверждение «противно самому понятию прямой линии». Это, как ему показалось, было именно тем, чего он так долго искал — желанным противоречием! Сразу после этого, незадолго до смерти, Саккери опубликовал свой труд под названием «Эвклид, освобожденный от недостатков».

Этим он лишил себя большей доли посмертной славы, так как не подозревал, что открыл то, что стало позже известно под именем «гиперболической геометрии». Через пятьдесят лет после Саккери, Ж. Г. Ламберт повторил ту же попытку, на этот раз подойдя еще ближе к цели. Наконец, через сорок лет после Ламберта и через пятьдесят лет после Саккери, неэвклидова геометрия была признана как новая, полноправная область геометрии. На доселе прямой дороге математики появилась развилка. В 1928 году неэвклидова геометрия одновременно, по одному из необъяснимых совпадений, была открыта венгерским математиком Яношем (Иоганном) Больяйем, которому тогда был двадцать один год, и тридцатилетним русским, Николаем Лобачевским. По иронии судьбы, в том же году великий французский математик Адриен-Мари Лежандр решил, что он нашел доказательство пятого постулата Эвклида. Его рассуждения весьма напоминали рассуждения Саккери.

Кстати, отец Яноша, Фаркаш (или Волфганг) Больяй, близкий друг великого Гаусса, также вложил много сил в попытку доказать Пятый постулат. В письме к своему сыну он пытался отговорить того от подобных занятий:

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.