Виктор Лёвин - Вероятность как форма научного мышления Страница 4
- Категория: Научные и научно-популярные книги / Математика
- Автор: Виктор Лёвин
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 9
- Добавлено: 2019-02-05 10:48:30
Виктор Лёвин - Вероятность как форма научного мышления краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Виктор Лёвин - Вероятность как форма научного мышления» бесплатно полную версию:В книге исследуется специфика вероятностных методов и вероятностного мышления на фоне исторического развития науки. Рамки исторического подхода ограничиваются периодом от XVII до конца XX веков. Учитываются ряд эпох становления идей вероятности, которые связываются с естествознанием, с математикой и с использованием вероятностных методов в системных исследованиях. Раскрываются специфические вопросы дискуссионного характера, касающиеся определения понятия «вероятность», понятия «стохастическая закономерность», а также затрагивающие научную полемику вокруг природы вероятностного детерминизма.Для научных работников, аспирантов и студентов.
Виктор Лёвин - Вероятность как форма научного мышления читать онлайн бесплатно
Другими словами, учение Мизеса о вероятностях приложимо лишь к некоторому идеализированному процессу бесконечного эксперимента и неясно как его применить к реальным процессам, которые всегда конечны.
Настаивая на эмпирическом обосновании понятия вероятности и отбрасывая классическую теорию из-за отсутствия такого обоснования, частотный подход Мизеса оказался неспособным удержать то положительное, что нес в себе классический подход. Оно состояло в следующем. Неявным образом при определении вероятности принимались во внимание определенные свойства индивидуального объекта, характеризующие набор объективных возможностей его поведения в испытании (например, однородность строения, симметрия и т.л.). Благодаря этому в известном смысле обоснованным становилось приложение классической теории к реальным сериям испытаний.
Здесь следует заметить, что эта сторона классического подхода обычно остается в тени. Более того, вместе с принципом недостаточного основания, символизирующим субъективизм и априоризм данной концепции, отбрасывают самую идею «равновозможности» как исходный пункт истолкования вероятности. Между тем, эту концепцию, если придавать «равновозможности» объективный смысл, нельзя рассматривать как полностью преодоленный этап. Скорее правы те авторы, которые считают, что теоретическое истолкование вероятности на базе данного понятия не исчерпало себя полностью. Так, А. Я. Хинчин, разбирая в одной из своих статей пример Мизеса с неправильной костью, показывает, что противопоставление данного случая идее равновозможности не оправдано, если исходить из некоторых топологических представлений.[20]
Поставленный выше вопрос о возможности эмпирических предсказаний на основе теории Мизеса непосредственно связан с так называемой проблемой тестификации вероятностных суждений (проблемой их эмпирических испытаний). Трудность ее решения в рамках данной концепции вытекает из недостаточности основных идеализаций последней.
В самом деле, если рассматривать классы, связываемые посредством отношений частот, как бесконечные, тогда ни одно конечное число экспериментов не в состоянии ни полностью подтвердить, ни полностью опровергнуть вероятностное суждение, ибо частотный подход не имеет каких-либо разумных средств ограничения требования иррегулярности. Теоретически здесь нельзя исключать факта, что любая конечная серия проведенных экспериментов может оказаться лишь флюктуацией с каким угодно большим отклонением относительной частоты в данной серии от относительной частоты во всем бесконечном классе. Между тем, на практике прогнозы по конечным наблюдаемым сериям являются обычным делом.
Продолжая линию Мизеса, проблему тестификации пытался решить Г. Рейхенбах, используя для этого положения развитой им вероятностной логики. Рейхенбах показывает, что отдельные высказывания можно рассматривать как многозначные, и это наводит его на мысль о возможности многозначной, в отличие от двузначной, логики, использующей всегда два истинностных значения. В качестве значения истинности в своей новой логике он принимает значение вероятности. Одновременно он принимает постулат, что высказывания многозначной логики могут быть переведены в высказывания двузначной логики (если вероятность равна 0 или 1).[21]
Проблему тестификации вероятностных суждений Рейхенбах связывал с проблемой вероятности. Причем, осмысленность понималась им в чисто позитивистском духе (осмысленно лишь то предложение, которое можно проверить эмпирическим наблюдением).
Его решение состояло в следующем. Вероятностные суждения, согласно Рейхенбаху, не могут быть сообщениями, как обычные предложения в рамках строгой логики (т. е. стоять в однозначном соответствии с наблюдаемыми фактами). Наоборот, они могут лишь соответствовать некоторой последовательности фактов, в зависимости от того, делают эти факты данное высказывание более или менее вероятным.[22] Одновременно, по его мнению, можно говорить и о том, что факт тоже устанавливает в свою очередь последовательность вероятностных высказываний в зависимости от большего или меньшего их соответствия факту. Именно поэтому, пишет Рейхенбах, можно говорить о вероятности события так же, как о вероятности высказывания. Тут дело, дескать, только в терминологии.
Вследствие этого, обычные способы тестификации, опирающиеся на двузначную логику (истинно-ложно) здесь неприемлемы. Но вероятностное высказывание может получить рациональный смысл, если его рассматривать как неопределенное предсказание, которое относится к частоте появления события в будущем. Оправдание вероятностного суждения возможно лишь индуктивным путем.[23]
В том, что здесь отсутствует действительное решение проблемы, убеждает рассмотрение одного из важных следствий позиции Рейхенбаха по данному вопросу, на которое обратил внимание еще Б. Рассел и назвал «бесконечным регрессом».[24] Бесконечным оказывается процесс оценки вероятности отдельного высказывания (а в этом Рейхенбах видел одну из главных задач своей вероятностной логики). Это связано с тем, что решение проблемы смысла вероятностных суждений покоится у Рейхенбаха на положении об исключительно вероятностном характере всего знания, ибо истинность у него отождествляется с вероятностью, а ее крайние границы – значения 0 и 1 – при статистическом подходе недостижимы.
Чтобы избежать такой бесконечности, Рейхенбах вынужден обратиться к дополнительной предпосылке, являющейся внешней по отношению к статистической трактовке вероятности, которую он отстаивал. Роль этой предпосылки играет у него понятие «неквалифицированной ставки», которую он называет также «слепой». Под ней Рейхенбах понимает высказывание, истинность которого принимается без доказательства. Но, в таком случае, здесь выдвигается постулат, не имеющий эмпирического эквивалента, что является незаконным допущением с позиций строго частотной трактовки вероятности.
Существенным пунктом, приведшим попытку Рейхенбаха к неудаче, является, по нашему мнению, несовместимость принимаемого им решения проблемы смысла вероятностных суждений с решением проблемы их значения. Позиция Рейхенбаха в этом вопросе двойственная.
С одной стороны, принимая частотное истолкование вероятности, он ратует будто бы за объективность вероятностных суждений, считая их одновременно средством эмпирического предвидения. Но правомерность употребления вероятностных суждений видит не в том, что они имеют объективное содержание, а в том, что таков характер нашего познания, которому изначально свойственна вероятностная природа.
Вероятностную логику с ее центральным понятием «вероятность» Рейхенбах объявляет некой «абстрактной средой» всего естествознания, его фундаментом, который нельзя обосновать, но возможно лишь открыть и исследовать.[25] Отсюда получается, что проблему тестификации, которую нельзя решать, отвлекаясь от вопроса об отношении вероятностных суждений к объективной реальности, Рейхенбах пытался просто обойти.
Следует подчеркнуть, что объективность частотного истолкования вероятности в этой концепции – мнимая, поскольку здесь отказываются от качественного объяснения устойчивости частот появления какого-либо признака в серии испытаний, признавая эту устойчивость за базисное эмпирическое данное, не требующее дальнейшего объяснения. Тем самым, в подходе Мизеса-Рейхенбаха игнорировалось по существу важное обстоятельство, что последовательность, называемая коллективом, составляется из индивидуальных и независимых событий, обладающих определенной свободой поведения по отношению друг к другу. И потому, именно свойства таких событий должны учитываться при содержательном истолковании вероятности.
Именно такого рода попытки, которые можно охарактеризовать как попытки установления онтологического статуса понятия вероятности, предпринимаются многими материалистически мыслящими учеными. Здесь исходят из того, что «…кроме количественных отношений, о которых explicite говорят вероятностные суждения, мы имеем дело с определенными отношениями и физическими влияниями, мерой которых (в каком-то аспекте) является математическая вероятность».[26]
При таком подходе ясно формулируется требование рассмотрения проблем объективного содержания понятия вероятности в определенных детерминистических рамках, чего нет при частотном подходе, развиваемом Мизесом и Рейхенбахом. Требованию детерминизма соответствует основное убеждение, состоящее в том, что вероятность обнаруживается через относительную частоту и представляет собой какую-то глубокую характеристику связи условий эксперимента с его результатами.[27] В ряде последних работ, посвященных анализу вероятностной проблемы, высказывается мысль, что эта связь получает дополнительное обоснование в свете системных представлений. Обычно ее характеризуют при обсуждении содержания статистических законов. Здесь мы не будем касаться данного вопроса, поскольку подробное его рассмотрение составляет предмет третьей главы.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.