Саймон Сингх - Великая Теорема Ферма Страница 44
- Категория: Научные и научно-популярные книги / Математика
- Автор: Саймон Сингх
- Год выпуска: -
- ISBN: нет данных
- Издательство: -
- Страниц: 70
- Добавлено: 2019-02-05 10:38:17
Саймон Сингх - Великая Теорема Ферма краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Саймон Сингх - Великая Теорема Ферма» бесплатно полную версию:История загадки, которая занимала лучшие умы мира на протяжении 358 лет
Саймон Сингх - Великая Теорема Ферма читать онлайн бесплатно
Значение математических мостов огромно. Они позволяют сообществам математиков, обитающим на отдельных островах, обмениваться идеями и исследовать то, что удалось создать их коллегам с других островов. Математика состоит из островов знания в море незнания. Например, на одном острове обитают геометры, занимающиеся изучением форм, на другом острове теории вероятностей математики изучают риски и случайность. Существуют десятки других островов, обитатели которых говорят на своем собственном языке, непонятном обитателям других островов. Язык геометрии сильно отличается от языка теории вероятностей, а алгебраическая терминология чужда тем, кто говорит только о статистике.
Большой интерес к гипотезе Таниямы-Шимуры был обусловлен тем, что она наводила мост между двумя островами и позволяла их обитателям впервые говорить друг с другом. Барри Мазур склонен видеть в гипотезе Таниямы-Шимуры устройство, позволяющее осуществлять перевод с одного языка на другой, аналогичное розеттскому камню, надписи на котором были выполнены на трех языках: демотическим египетским письмом, на древнегреческом языке и египетскими иероглифами. Так как демотическое письмо и древнегреческий были понятны, археологи впервые смогли расшифровать египетские иероглифы. «Если один из языков вы знаете, то розеттский камень позволяет вам достичь глубокого понимания другого языка, — говорит Мазур. — Но гипотеза Таниямы-Шимуры — розеттский камень, наделенный определенной магической силой. Гипотеза Таниямы-Шимуры обладает весьма приятной особенностью, которая заключается в том, что простые интуитивные соображения в модулярном мире при переводе превращаются в глубокие истины в эллиптическом мире, и наоборот. Более того, глубокие проблемы в эллиптическом мире иногда решались очень просто при переводе их с помощью нового "розеттского камня" на язык модулярного мира, если удавалось обнаружить в модулярном мире идеи и средства для решения переведенной проблемы. Оставаясь в эллиптическом мире, мы были бы обречены на поражение».
Если бы гипотеза Таниямы-Шимуры оказалась верной, то она позволила бы математикам подходить к решению эллиптических проблем, остававшихся нерешенными на протяжении столетий, с позиций модулярного мира. Была надежда, что область эллиптических уравнений удастся объединить с областью модулярных форм. Гипотеза Таниямы-Шимуры также породила надежду на существование мостов и между другими областями математики. В 60-е годы возможности, заложенные в гипотезе Таниямы-Шимуры, поразили воображение Роберта Ленглендса из Принстонского Института высших исследований. И хотя гипотеза не была доказана, Ленглендс был убежден, что она представляет собой всего лишь один из элементов гораздо более общей схемы унификации. Он считал, что все основные разделами математики взаимосвязаны, и приступил к поиску такого рода связей. Через несколько лет его поиски стали приносить первые результаты. Другие гипотезы о связях между разными разделами математики были гораздо слабее и рискованнее, чем гипотеза Таниямы-Шимуры, но все они сплетались в одну тонкую сеть. Ленглендс мечтал о том, как одна за другой эти гипотезы будут доказаны и возникнет великая единая математика.
Ленглендс охотно обсуждал свой план построения математики будущего (который впоследствии стали называть программой Ленглендса) и пытался привлечь других математиков к участию в доказательстве множества своих гипотез. Никаких путей, ведущих к цели не было видно, но если бы мечта Ленглендса все же осуществилась, то награда была бы грандиозной. Любую неразрешимую проблему в одной области математики можно было бы трансформировать в аналогичную проблему из другой области, где для ее решения имелся бы целый новый арсенал методов.[17] В случае неудачи эту проблему можно было бы перенести еще в какую-нибудь другую область математики, и так далее — до тех пор, пока наконец она не будет решена. В один прекрасный день, как надеялся автор программы Ленглендс, математики смогут решить самые трудные и тонкие проблемы, перенеся их в более подходящее место математического ландшафта.
Важные следствия программа Ленглендса могла бы иметь и для прикладных наук и техники. Идет ли речь о моделировании взаимодействий между сталкивающимися кварками, или о выяснении наиболее эффективного варианта организации телекоммуникационной сети, часто ключом к решению проблемы служит выполнение математических расчетов. В некоторых разделах физики и техники сложность вычислений столь высока, что служит серьезнейшим препятствием на пути к прогрессу. Если бы математики могли доказать «мостообразующие» гипотезы из программы Ленглендса, то появились бы пути решения не только абстрактных, но и практических проблем реального мира.
К 70-м годам программа Ленглендса стала своего рода перспективным планом развития математики, но «путь в рай», о котором может только мечтать каждый любитель решать задачи, был закрыт весьма простым обстоятельством: никто не имел ни малейшего представления о том, как можно было бы доказать любую из гипотез Ленглендса. Первым шагом к осуществлению программы Ленглендса могло бы стать доказательство гипотезы Таниямы-Шимуры, но и оно пока было неосуществимо.
Несмотря на это, гипотеза Таниямы-Шимуры упоминалась в сотнях математических статей, авторы которых рассуждали о том, что произошло бы, если бы ее удалось доказать. Такие статьи начинались с преамбулы: «Предположим, что гипотеза Таниямы-Шимуры верна…» Далее следовал набросок решения какой-нибудь нерешенной задачи. Разумеется, полученные в таких работах результаты были не более чем гипотетическими. В свою очередь, эти результаты включались как предположения в другие результаты, и т. д. Возникла обширная математическая «страна», опиравшаяся только на истинность гипотезы Таниямы-Шимуры. Именно эта гипотеза стала фундаментом целого нового здания в математике, но до тех пор, пока гипотеза Таниямы-Шимуры не была доказана, все здание могло рухнуть в любой момент.
В то время Эндрю Уайлс был молодым аспирантом Кембриджского университета, и он отчетливо вспоминает тревогу, которая охватила математическое сообщество в 70-е годы: «Мы строили все новые и новые гипотезы, простиравшиеся все дальше и дальше в будущее, но все это обратилось бы в прах, окажись гипотеза Таниямы-Шимуры неверна. Нам было необходимо доказать ее, чтобы продемонстрировать обоснованность плана, который мы с таким энтузиазмом наметили на будущее».
Математики сложили хрупкий карточный домик. Они мечтали о том, что в один прекрасный день удастся подвести под это сооружение надежный фундамент. Их неотвязно мучил кошмар: кто-нибудь мог доказать, что гипотеза Таниямы-Шимуры неверна, и тем самым свести на нет плоды математических исследований на протяжении двух десятков лет.
Недостающее звено
Осенью 1984 года избранная группа специалистов по теории чисел собралась на симпозиум в Обервольфахе, небольшом городке в Германии, в Шварцвальде. Участники симпозиума намеревались обсудить успехи в изучении эллиптических кривых. Естественно, что некоторые из докладчиков собирались сделать сообщения о продвижениях, которые им удалось достичь при исследовании гипотезы Таниямы-Шимуры. Один из выступавших, математик из Саарбрюкена Герхард Фрей высказал весьма примечательное утверждение. По его мнению, если бы кому-нибудь удалось доказать гипотезу Таниямы-Шимуры, то тем самым была бы доказана и Великая теорема Ферма.
Когда Фрею предоставили слово для доклада, он начал с того, что выписал уравнение Ферма
xn + yn = zn, где n — натуральное число больше 2.
Великая теорема Ферма утверждает, что это уравнение не имеет решений в целых числах. Фрей исследовал вопрос о том, что бы произошло, если бы Великая теорема Ферма оказалась неверной, т. е. если бы уравнение Ферма допускало бы по крайней мере одно решение в целых числах. Фрей не имел ни малейшего представления о том, каким могло бы быть его гипотетическое (и еретическое) решение, поэтому неизвестные целые числа, якобы удовлетворяющие уравнению Ферма, он обозначил буквами A, B и C. Тем самым он предположил, что для некоторого N выполнено равенство:
AN + BN = CN.
Затем Фрей приступил к «преобразованию» уравнения. Это строгая математическая процедура, изменяющая вид уравнения, оставляя неизменной его сущность. С помощью искусных и сложных маневров Фрею удалось преобразовать исходное уравнение Ферма, обладающее гипотетическим решением, к виду
y2 = x3 + (AN — BN)·x2 — ANBN.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.