Генри Дьюдени - Пятьсот двадцать головоломок Страница 58

Тут можно читать бесплатно Генри Дьюдени - Пятьсот двадцать головоломок. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Генри Дьюдени - Пятьсот двадцать головоломок

Генри Дьюдени - Пятьсот двадцать головоломок краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Генри Дьюдени - Пятьсот двадцать головоломок» бесплатно полную версию:
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.

Генри Дьюдени - Пятьсот двадцать головоломок читать онлайн бесплатно

Генри Дьюдени - Пятьсот двадцать головоломок - читать книгу онлайн бесплатно, автор Генри Дьюдени

(a) В противном случае A следующим ходом наберет 11 очков. (b) B не может помешать A набрать 11 или 17 очков на следующем ходе. (c) Снова для того, чтобы не дать A немедленно набрать 24 очка. (d) Чтобы не дать A набрать 17 очков, но при этом A удается набрать 24. (e) B мешает A набрать 30 очков, но не может помешать ему набрать 37. (f) Таким образом, A всегда может набрать 24 (как в предыдущей игре) или 30 очков (как в данной), причем в любом случае ему удается набрать 37 очков.

462. Если не учитывать нехватку карт, то серия очков, ведущая к победе, имеет вид 7, 12, 17, 22. Если вы сумеете набрать 17 и оставить при этом по крайней мере по одной 5-очковой паре обоих видов (4—1, 3—2), то вы должны выиграть. Если вы сумеете набрать 12 и оставить по две 5-очковые пары обоих видов, то вы должны выиграть. Если вы сумеете набрать 7 и оставить по три 5-очковые пары обоих видов, то вы должны выиграть. Так, если первый игрок пойдет 3 или 4, вы пойдете на 4 или 3 и наберете 7. Теперь уже ничто не сможет помешать второму игроку набрать 12, 17 и 22. На первый ход с 2 можно всегда ответить 3 или 2. Так, например, 2—3, 2—3, 2—3, 2—3 (20), и, поскольку не осталось 2, второй игрок выигрывает. Если ход игры был 2—3, 1—3, 3—2, 3—2 (19), то второй игрок выигрывает. Если 2—3, 3—4 (12) или 2—3, 4—3 (12), то снова выигрывает второй игрок. Исследование защиты 2—2 я оставляю читателю. Самым лучшим вторым ходом первого игрока будет 1.

Первый игрок сможет всегда выиграть только в случае, если он пойдет с 1. Вот примерные партии: 1—1, 4—1, 4—1, 4(16) — выигрывает; 1—3, 1—2, 4—1, 4—1, 4 (21) — выигрывает; 1—4, 2 (7) — выигрывает; 1—2, 4 (7) — выигрывает.

463. Мне следует пойти на MN. Мой противник может пойти на HL, тогда я отвечу ходом на CD. (Если бы он пошел на CD, то я ответил бы HL, и позиции оказались бы одинаковыми.) Самое лучшее, что он может теперь сделать, это пойти на DH (выиграв одно очко), но, поскольку он вынужден снова ходить, я выигрываю оставшиеся восемь квадратов.

464. Первый игрок всегда может выиграть. Он должен перевернуть третью карту от любого конца, при этом получится расположение: 00.0000000. Далее, чтобы ни делал второй игрок, первый может всегда получить либо 000.000, либо 00.00.0.0, либо 0.00.000 (порядок групп не играет роли). В первом случае, что бы ни делал второй игрок с одним из триплетов, первый игрок повторяет то же самое на другом триплете до тех пор, пока не перевернет последнюю карту. Во втором случае первый игрок повторяет аналогичным образом действия своего противника и выигрывает. В третьем случае, что бы ни делал второй игрок, первый всегда может добиться расположения 0.0, или 0.0.0.0, или 00.00 и, очевидно, выигрывает.

[Первый игрок может также выиграть, перевернув сначала вторую или четвертую карту от любого конца. — М. Г.]

465. На рисунке показано, как следует расположить костяшки, домино, чтобы сумма в каждой из строк равнялась 10. Приведите все дроби к общему знаменателю 60. Тогда сумма всех числителей должна равняться 1800, или по 600 в каждой строке, чтобы получилось 10. Выбор и расположение костяшек требуют небольшого размышления и изобретательности.

466. Четыре костяшки, изображенные на рисунке, удовлетворяют нашим условиям. Можно обнаружить, что, суммируя группы очков, непосредственно прилегающие друг к другу, удается получить любое число от 1 до 23 включительно.

[Решение Дьюдени было улучшено. Цепочка из четырех костяшек 1—3, 6—6, 6—2, 3—2 позволяет получить все числа от 1 до 29. Кроме того, оказывается, с помощью трех костяшек 1—1, 4—4, 4—3 можно получить любое число от 1 до 17. — М. Г.]

467. Приведенный рисунок не требует пояснений. Восемнадцать костяшек образуют квадрат, и ни в одной из строк или столбцов одно и то же число ие повторяется дважды. Разумеется, существуют и другие решения.

468. На нашем рисунке приведено правильное решение. Костяшки приложены друг к другу согласно обычному правилу, сумма очков в каждом луче равна 21, а в центре расположены числа 1, 2, 3, 4, 5, 6 и две пустышки.

469. На рисунке показано одно из решений. Цепочка костяшек разорвана на 4 части по 7 штук, а сумма очков в каждой части равна 22.

470. На рисунке показано правильное решение: два квадрата, составленные из пустышек, находятся внутри. Если бы в приведенном ранее примере не все числа находились на границе, то нужно было бы просто поменять местами отсутствующее число и пустышки. Так что в этом случае не было бы никакой головоломки. Однако, поскольку все числа присутствовали на границе, таким простым маневром обойтись не удалось.

[Относительно задач такого типа, известных под названием кадрилей, см. Е. Lucus, Rґecrґeations Mathematiques, 2, 52-63, и работу Wade E., Philpott «Quadrilles» в журнале Recreational Mathematics Magazine, N 14, January — February 1964, pp. 5-11. — M. Г.]

471. Решение приведено на рисунке. Сумма всех очков равна 132. Одна треть ее равна 44. Разделите сначала все костяшки на три кучки, по 44 очка в каждой. Затем если мы попытаемся взять сумму очков вдоль стороны, равной 12, то, поскольку 4 раза по 12 на 4 превышает 44, мы должны добиться в каждом случае того, чтобы сумма очков, стоящих по четырем углам, в каждой рамке равнялась 4. Остальное получается после ряда проб, причем можно менять местами костяшки из разных кучек, содержащие равное число очков.

472. На рисунке показано, как можно сложить из 28 костяшек 7 полых квадратов, чтобы при этом суммы очков вдоль каждой из сторон в любом квадрате равнялись между собой. При составлении квадратов вам полезно иметь в виду следующее маленькое правило. Если сумма очков равна, скажем, 7 (как в первом примере), а вы хотите, чтобы их сумма вдоль каждой из сторон равнялась 3, то 4 × 3 - 7 дает нам 5 — сумму очков в четырех углах. Это совершенно необходимо. Так, в последнем примере 4 × 16 = 64 - 43 говорит нам о том, что сумма очков, стоящих по углам, должна равняться 21: так оно и есть в действительности.

473. Если мы уберем из комплекта четыре костяшки 7—6, 5—4, 3—2, 1—0, то из оставшихся костяшек можно будет составить правильную последовательность. Подойдут также любые другие комбинации этих чисел; мы могли бы, например, убрать 7—0, 6—1, 5—2 и 4—3. Общее правило состоит в том, что из комплекта домино, заканчивающегося дублем нечетного числа, мы должны убрать костяшки, которые содержат в совокупности все числа от пустышки до числа, на две единицы меньшего самого большого числа в нашем наборе.

474. На рисунке показано, как можно составить из 28 костяшек два квадрата, у которых сумма очков вдоль любой из сторон равна 22. Если сумма равна 22, то сумма углов должна равняться 8; если 23, то 16; если 24, то 24; если 25, то 32; если 26, то 40. Сумма не может быть меньше 22 или больше 26.

475. На рисунке показано, как можно составить 7 столбиков из 28 костяшек.

476. На рисунке показано, как можно составить из 28 костяшек прямоугольник, у которого сумма очков в каждом столбце равна 24, а в каждой строке 21.

477. Расположите второй столбик (на нашем рисунке) под первым, а третий под вторым (мы разделили один столбик на три части для удобства печати), и вы получите искомое решение.

478. Существует 126 760 различных способов, которыми можно расположить 15 костяшек в одну линию, если различать два направления.

479. Наименьшее возможное число равно 36 спичкам. Мы можем составить треугольник и квадрат из 12 и 24 спичек, треугольник и пятиугольник — из 6 и 30 спичек, треугольник и шестиугольник — из 6 и 30 спичек, квадрат и пятиугольник — из 16 и 20 спичек, квадрат и шестиугольник — из 12 и 24 спичек, а пятиугольник и шестиугольник — из 30 и 6 спичек. Эти пары чисел можно варьировать во всех случаях, за исключением четвертого и последнего. Общее число спичек не может быть меньше 36. Для треугольника и шестиугольника нужно взять число спичек, делящееся на 3; на квадрат и шестиугольник идет четное число спичек. Следовательно, искомое число должно находиться среди чисел, делящихся на 6, таких, как 12, 18, 24, 30, 36. но меньше чем из 36 спичек нельзя сложить пятиугольник и шестиугольник.

480. Если загородка имеет вид прямоугольника, то его площадь будет тем больше, чем ближе он к квадрату. Но самая большая площадь получается, когда жерди расположены в виде правильного многоугольника, а если это можно сделать несколькими способами, то максимальной будет площадь у того многоугольника, стороны которого состоят всего из одной жерди. Так, в приведенном ранее примере площадь шестиугольника была больше площади треугольника. Изображенный на рисунке правильный двенадцатиугольник ограничивает наибольшую (в случае 12 жердей) площадь, достаточную для примерно 11⅕ овцы. Одиннадцатью жердями можно огородить участок, достаточный только для примерно 9 овцы. Следовательно, для 10 овец необходимо взять 12 жердей. Если вы расположите эти жерди в виде квадрата, как показано пунктиром, то огородите участок только для 9 овец.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.