Владимир Живетин - Введение в теорию риска (динамических систем) Страница 7

Тут можно читать бесплатно Владимир Живетин - Введение в теорию риска (динамических систем). Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Владимир Живетин - Введение в теорию риска (динамических систем)

Владимир Живетин - Введение в теорию риска (динамических систем) краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Владимир Живетин - Введение в теорию риска (динамических систем)» бесплатно полную версию:
В работе рассматриваются основы структурно-функционального синтеза и анализа динамических систем, позволяющие сформулировать вводные положения теории риска, включая оценку опасных и безопасных состояний динамических систем.В работе вводятся первичные и вторичные показатель риска как для классических информационно-энергетических систем, так и для суперклассических – интеллектуально-энергетических систем.Первичные показатели риска характеризуются множеством безопасных состояний, рассчитанных согласно, например, теории устойчивости; вторичные показатели риска представляют собой вероятности выхода динамической системы в область критических состояний с учетом свойств систем контроля и управления.Полученные результаты позволяют осуществить математическое моделирование прогнозирования и управления рисками различных динамических систем, включая интеллектуально-энергетические.

Владимир Живетин - Введение в теорию риска (динамических систем) читать онлайн бесплатно

Владимир Живетин - Введение в теорию риска (динамических систем) - читать книгу онлайн бесплатно, автор Владимир Живетин

Последний принцип реализует единство целенаправленного движения иерархии динамических систем.

Выполнение указанных принципов обеспечивает эволюцию динамических систем, а отклонение от этих принципов – инволюцию. Выполнение принципа триединства подсистем структур динамических систем, согласно которому формируются функциональные свойства подсистем структуры, обеспечивает необходимое условие структурно-функциональной целостности.

Триединство систем бытия реализуется на следующих уровнях:

– материальном;

– духовном.

Триединство на материальном уровне формируется на основе взаимосвязи, взаимовлияния:

– информации;

– энергии;

– массы.

При этом энергия без информации и массы невозможна, масса обладает энергией и информацией, информация без энергии и вне массы не существует. Таковы основы принципа триединства в материальной сфере.

Триединство на уровне живого вещества или духовного формируется на основе:

– биосферы (организованной материи);

– этносферы;

– социосферы.

В рамках этих систем, только в их единстве, возможны единые цели и программы, включающие в себя ответы на вопросы: что творить, как творить, где и чем творить.

Для систем духовно-материального уровня проведен структурно-функциональный синтез, результаты которого представлены на рис. 1.15.

Данная триединая иерархическая система, включающая четыре подсистемы, обладающая динамическими свойствами, творит эволюцию человека, мира в котором он живет. Эволюция духовных систем бытия включает этапы: популяционный (хомосферный), теосферный, техносферный, или социосферный.

Рис. 1.15

Если идентифицировать структурно-функциональные свойства триединства духовной системы с позиции Библии, то следует утверждать:

Бог-Отец творит биосферу (энергию, массу);

Бог-Дух творит этносферу (информацию);

Бог-Слово творит социосферу, духовно-материальные ценности.

С учетом сказанного, теория риска посвящена следующим проблемам: разработке основ анализа, прогнозирования, управления рисками и безопасностью триединых иерархических систем бытия.

Теоретические основы риска включают структурно-функциональный синтез и анализ согласно принципу минимального риска (отрицательная обратная связь на рис. 1.15 обозначена как ) и принципу максимального саморазвития (положительная обратная связь на рис. 1.15 обозначена как ).

1.2.4. Организованная материя

С учетом сказанного, организованная материя представляет собой иерархию динамических систем. Для организованной материи справедлив закон сохранения массы, энергии, информации в изолированном пространстве.

Согласно основополагающим принципам, синтезирована на структурно-функциональном уровне система, реализующая организованную материю (рис. 1.16).

Рис. 1.16

На рис. 1.17 представлены итоги структурно-функционального синтеза подсистемы 1 (см. рис. 1.16), реализующей принцип максимального саморазвития, или триединства.

Рис. 1.17

На рис. 1.17 обозначены: Ф – функциональные свойства подсистем; Σ – структурные связи подсистем.

Уточним целевое назначение подсистем структуры, приведенной на рис. 1.17.

На вход подсистемы 1 поступает, например, материя, имеющая полевую структуру, так, например, солнечная энергия Е*. На этом уровне реализуется синтез объектов материального мира в виде иерархии структур.

В подсистеме 2 из вещества с заданной структурой творятся подсистемы структуры с заданными функциональными свойствами, обладающие информацией, необходимой каждой из динамических систем иерархии.

Подсистема 3 объединяет подсистемы в единую систему, что позволяет создать организованную, или структурированную, материю в виде динамических систем, отличающихся между собой информационно, энергетически, массово, что обусловливает их структурно-функциональные свойства.

Подсистема 4 оценивает области состояний: опасные или безопасные, в которых находится динамическая система.

Таким образом, к организованной материи будем относить материальные объекты, обладающие вышеуказанными структурно-функциональными свойствами, реализующие заданную цель в процессе своего функционирования.

Целевое назначение динамической системы включает:

– реализацию заданной цели, т. е. обеспечение необходимых показателей эффективности функционирования;

– обеспечение заданных или нормативных показателей риска и безопасности при заданных показателях эффективности.

Для реализации целевых назначений динамическая система наделяется необходимыми: структурой и функциональными свойствами подсистем структуры. Структура и функциональные свойства подсистем этой структуры включают:

– систему управления эффективностью функционирования системы;

– систему управления рисками и безопасностью функционирования системы.

Относительно исходных знаний о структуре иерархической системы бытия отметим следующее. Научные знания, посвященные синтезу и анализу структурно-функциональных динамических систем иерархии, а также систем управления эффективностью и безопасностью, синтезированных на структурно-функциональном уровне, представлены на рис. 1.18.

Рис. 1.18

1.3. Топические и топологические пространства иерархических динамических систем. Введение

В дальнейшем будем применять понятия топического и топологического пространств.

Топическое пространство, включающее совокупность всех реальных динамических систем, есть бытие. В качестве основных иерархических структур будем рассматривать духовно-материальную систему бытия человека (рис. 1.15), включающую: этносферу, социосферу, биосферу.

Каждая из этих иерархических структур представляет топическое пространство. Так, биосфера как иерархическая динамическая система формирует биотопическое пространство; социосфера формирует социотопическое пространство; этносфера формирует этнотопическое пространство. Так, например, к эготопическому пространству относится эгосфера [26].

Топическому пространству соответствует топологическое пространство – совокупность абстрактных объектов, например в форме математических объектов, служащих моделью соответствующего объекта топического пространства.

Особенности этих пространств:

– в них задано множество взаимозависимых объектов;

– множество объектов включает в себя совокупность подмножеств объектов с различными процессами и полями, обладающими различными функциональными свойствами.

Проблема изучения этих пространств необычайно сложна по многим причинам, и прежде всего из-за широкого диапазона изменений свойств процессов и полей, наполняющих эти пространства, включая макро– и микропроцессы, тонкие процессы, прежде всего создаваемые, например, духовной системой или ноосферой человека. Выделим следующие подпространства: макро-, микро-и тонкие. Так, для эгосферы тонкие пространства связаны с изучением и описанием, прежде всего, свойств потенциалов клетки и констелляции клеток, создающих электромагнитное поле.

Учитывая важное место в иерархии динамических систем человека и его эгосферы, рассмотрим основные вводные понятия топического и топологического пространств, созданных человеком.

Эготопическое пространство формируется всем тем, что связано с внутренним миром человека.

Хомотопическое пространство формируется всем тем, что связано как с внутренним, так и с внешним миром.

Отметим особенности, присущие человеку и эгосфере как динамическим системам при формировании указанных пространств.

Пространство органов, систем человека, имеющих внутреннее происхождение, т. е. созданных эндогенными процессами, будем называть эготопическим пространством. Этому пространству, используя абстрактные модели, ставим в соответствие эготопологическое пространство.

Человек, создающий объекты, как во внутренней, так и во внешней среде, формирует хомотопическое пространство. Этому пространству, используя абстрактные модели объектов, ставим в соответствие хомотопологическое пространство.

Хомотопическое пространство включает органы, элементы и системы организма, между которыми различным способом определены энергетическо-информационные связи. Это пространство связано с организмом как сложной пространственной структурой, в которой размещены различные органы, в том числе образующие подсистемы формирования энергетик, контроля и управления этими энергетиками для реализации человеческой деятельности во внешней среде.

Хомотопологическое пространство процессов и полей – более общее понятие, чем эготопологическое, в силу того, что оно содержит как экзогенные, так и эндогенные поля и процессы, созданные человеком. В эготопическом пространстве работает ученый-медик, который создает модели и изучает физические процессы и поля и прогнозирует их состояние. В эготопологическом пространстве должен работать ученый-математик, который создает абстрактные модели процессов и изучает законы их изменения.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.