ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р. Страница 7
- Категория: Научные и научно-популярные книги / Математика
- Автор: Хофштадтер Даглас Р.
- Страниц: 233
- Добавлено: 2020-09-17 03:57:18
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р. краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.» бесплатно полную версию:Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.
Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.
Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.
Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.
Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р. читать онлайн бесплатно
Глава V: Рекурсивные структуры и процессы. Идея рекурсии представлена в разных контекстах: музыкальные, лингвистические и геометрические структуры, математические функции, физические теории, компьютерные программы и т. д.
Канон с интервальным увеличением. Ахилл и Черепаха пытаются ответить на вопрос: «Где содержится больше информации — в пластинке или в патефоне?» Этот странный вопрос возникает, когда Черепаха описывает пластинку с некоей оригинальной записью. Будучи проиграна на разных патефонах, эта запись воспроизводит две различные мелодии: В-А-С-H и C-A-G-E. Однако оказывается, что, в некотором смысле, эти две мелодии — «одно и то же».
Глава VI: Местонахождение значения. Подробное обсуждение того, каким образом значение разделено между закодированным сообщением, дешифрующим механизмом и получателем этого сообщения. В качестве примеров приводятся цепочки ДНК, нерасшифрованные старинные надписи и пластинки, затерянные в космосе. Предполагается связь разума с «абсолютным» значением.
Хроматическая фантазия и фига. Короткий Диалог, почти ничем, кроме названия, не похожий на Баховскую «Хроматическую фантазию и фугу». Речь здесь идет о том, как правильно манипулировать высказываниями, чтобы они оставались истинными; в частности, обсуждается вопрос, существуют ли правила обращения с союзом «и».
Глава VII: Исчисление высказываний. Обсуждается, как слова, подобные «и», могут управляться формальными правилами. Снова используются идеи изоморфима и автоматического приобретения значения символами в подобной системе. Между прочим, все примеры в этой главе — «дзентенции», суждения, взятые из коанов дзена. Это сделано специально; ирония в том, что коаны дзена намеренно нелогичны.
Крабий канон. Диалог, основанный на одноименной пьесе из «Музыкального приношения». Оба названы так, поскольку крабы (предположительно) ходят, пятясь. Краб впервые выходит на сцену в этом Диалоге. Возможно, что это самый насыщенный словесными трюками и игрой разных уровней Диалог в книге. Гёдель, Эшер и Бах тесно переплетены в этом коротеньком Диалоге.
Глава VIII: Типографская теория чисел. Представляет расширенный вариант исчисления высказываний, так называемую «ТТЧ». В ТТЧ теоретико-численные рассуждения могут быть сведены к строгой манипуляции символами. Рассматриваются различия между формальными рассуждениями и человеческой мыслью.
Приношение МУ. В этом Диалоге вводятся несколько новых тем книги. Хотя, на первый взгляд, в нем обсуждаются дзен-буддизм и коаны, на самом деле это тонко завуалированное обсуждение теоремности и нетеоремности, истинности и ложности строчек теории чисел. Упоминается молекулярная биология — в особенности, Генетический Код. Сходство с «Музыкальным приношением» здесь только в названии и в автореферентных играх.
Глава IX: Мумон и Гёдель. Разговор идет о странных идеях дзен-буддизма. Центральная фигура — монах Мумон, автор знаменитых комментариев к коанам. В метафорическом смысле, идеи дзена напоминают определенные идеи в современной философии математики. После этого обсуждения вводится основная идея Гёделя — Геделева нумерация, и затем Теорема Гёделя впервые приводится целиком.
Часть II: ЭГБ
Прелюдия... Этот Диалог связан со следующим Оба они основаны на прелюдиях и фугах из Баховского «Хорошо темперированного клавира». Ахилл и Черепаха приносят подарок Крабу, у которого в это время в гостях Муравьед. Подарок оказывается записью «ХТК», и друзья решают сразу же ее прослушать. Во время прелюдии они обсуждают строение прелюдий и фуг, Ахилл спрашивает, каким образом лучше слушать фугу: как одно целое или как сумму разных голосов? Этот спор между холизмом и редукционизмом затем продолжается в «Муравьиной фуге».
Глава X: Уровни описания и компьютерные системы. Обсуждаются разные уровни восприятия картин, шахматных позиций и компьютерных систем. Последние затем объясняются подробно; это включает описание машинных языков, языков ассемблера, языков компилятора, операционных систем и так далее. Далее разговор переходит к другим типам сложных систем, таких как спортивные команды, ядра, атомы, погода и так далее. Возникает вопрос, как много существует промежуточных уровней, и существуют ли они вообще.
…и Муравьиная фуга. Имитация музыкальной фуги: каждый голос вступает с одним и тем же замечанием. Рекурсивный рисунок вводит тему Диалога — холизм и редукционизм. Рисунок составлен из слов, которые, в свою очередь, состоят из меньших слов и так далее На четырех уровнях этой странной картинки появляются слова «ХОЛИЗМ», «РЕДУКЦИОНИЗМ» и «МУ». Затем разговор переходит к знакомой Муравьеда; мадам Мура Вейник — разумная муравьиная колония. Обсуждаются разные уровни ее мыслительных процессов. В этом Диалоге есть множество приемов фуги, для подсказки читателю упоминаются те же самые приемы, звучащие в фуге, которую слушает четверка друзей. В конце «Муравьиной фуги», значительно измененные, появляются темы «Прелюдии».
Глава XI: Мозг и мысль. Тема этой главы — «Как физическая аппаратура мозга может порождать мысли?» Сначала описываются крупномасштабные и мелкомасштабные структуры мозга. Затем выдвигается несколько гипотез об отношении понятий к нейронной деятельности.
Англо-франко-немецко-русская сюита. Интерлюдия, состоящая из трех переводов знаменитого стихотворения «Jabberwocky» Льюиса Кэрролла.
Глава XII: Разум и мысль. Предыдущие стихотворения естественно подводят к вопросу: «Могут ли языки — или даже сам разум разноязычных людей — быть „отображены“ один на другой?» Как вообще возможна коммуникация между мозгами двух разных людей? Что между ними общего? Может ли мозг, в некоем объективном смысле, быть понят другим мозгом? Для возможного ответа используется географическая аналогия.
Ария с различными вариациями. Форма этого Диалога основана на «Гольдберг-вариациях» Баха, а его содержание имеет отношение к теоретико-численным задачам, подобным Гипотезе Гольдбаха. Основная цель этого гибрида — показать, как гибкость теории чисел опирается на тот факт, что поиски в бесконечном пространстве имеют множество вариантов. Некоторые из них оказываются бесконечными, некоторые — конечными, а другие находятся где-то посередке.
Глава XIII: Блуп, Флуп и Глуп. Это названия трех компьютерных языков. Программы Блупа могут осуществлять только предсказуемо конечный поиск, в то время как программы Флупа способны на непредсказуемый или даже бесконечный поиск. В этой главе я стараюсь объяснить понятие примитивно рекурсивных и общерекурсивных функций в теории чисел, поскольку они очень важны для доказательства Теоремы Гёделя.
Ария в ключе G. В этом Диалоге словесно отражена автореферентная конструкция Гёделя. Эта идея принадлежит У. Я. О. Квайну. Диалог служит прототипом следующей главы.
Глава XIV: О формально неразрешимых суждениях ТТЧ и родственных систем. Название этой главы — адаптация заглавия статьи Гёделя 1931 года, где впервые появилась его теорема о неполноте. Тщательно рассматриваются две основные части доказательства. Показано, как из предположения о непротиворечивости ТТЧ вытекает то, что она (или любая похожая система) неполна. Обсуждаются отношения ТТЧ к эвклидовой и неэвклидовой геометрии, и значение теоремы Гёделя для философии математики.
Праздничная кантатата… В которой Ахилл не может убедить скептически настроенную Черепаху в том, что сегодня его день рождения. Его повторные неудачные попытки предвосхищают повторяемость Гёделева аргумента.
Глава XV: Прыжок из системы. Обсуждается повторяемость Гёделева аргумента, из чего вытекает, что ТТЧ не только неполна, но и в принципе непополнима. Анализируется и опровергается интересный аргумент Лукаса, использующего Теорему Гёделя для доказательства того, что человеческая мысль не может быть механизирована.
Благочестивые размышления курильщика табака. В этом Диалоге затрагиваются многие темы, относящиеся к автореферентности и самовоспроизводству. Среди примеров — телевизионные камеры, снимающие сами себя, а также вирусы (и другие подклеточные существа), способные на самосборку. Название Диалога происходит из стихотворения самого Баха, которое цитируется в тексте.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.