Генри Дьюдени - Кентерберийские головоломки Страница 8
- Категория: Научные и научно-популярные книги / Математика
- Автор: Генри Дьюдени
- Год выпуска: -
- ISBN: нет данных
- Издательство: -
- Страниц: 53
- Добавлено: 2019-02-05 10:36:30
Генри Дьюдени - Кентерберийские головоломки краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Генри Дьюдени - Кентерберийские головоломки» бесплатно полную версию:Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.Книга доставит удовольствие всем любителям занимательной математики.
Генри Дьюдени - Кентерберийские головоломки читать онлайн бесплатно
– Лорды, – сказал Красильщик, – послушайте мою загадку. С тех пор, как я проснулся на заре от крика петухов (чтоб нашему хозяину было пусто за этот шум!), я все ищу на нее ответа, но, клянусь святым Бернардом, так и не нашел. На этом куске ткани изображены 64 лилии, а вы скажите, как мне удалить шесть лилий, чтобы при этом в каждом вертикальном и горизонтальном ряду осталось по-прежнему четное число цветов.
Красильщик был ошеломлен, когда каждый из присутствующих показал, как это сделать, причем все – по-разному. Но тут заметили, что славный Оксфордский студент что-то шепнул Красильщику, и тот поспешил добавить:
– Постойте, господа хорошие! Я еще не все сказал. Вы должны определить, сколькими разными способами это можно сделать!
Все согласились, что это совсем другое дело. И только несколько человек из всей компании дали правильный ответ.
28. Великий диспут между Кармелитом и Приставом церковногосуда. Чосер сообщает о том прискорбном факте, что гармония паломничества время от времени нарушалась ссорами между Кармелитом и Приставом церковного суда. Однажды последний пригрозил даже: «Свою побереги, приятель, кожу. И ты, монах, мне можешь плюнуть в рожу, Когда о братьях истины позорной Всем не раскрою я до Сиденборна», но здесь вмешался достойный Трактирщик и временно восстановил мир. К несчастью, ссора вспыхнула снова во время одного весьма любопытного диспута. Дело было так.
В одном месте путь паломников должен был пролечь вдоль двух сторон квадратного поля, и кое-кто из паломников настаивал, чтобы, не обращая внимания на заграждения, двигаться из одного угла поля в другой, как они и делают это на рисунке. И тут Кармелит поразил всю компанию, заявив, что нет нужды нарушать заграждения, ибо и при том и при другом способе придется преодолеть в точности одинаковые расстояния.
– Клянусь небом, – воскликнул Пристав, – ты сущий болван!
– Ничего подобного, – ответил Кармелит, – если только все выслушают меня терпеливо, то я докажу, что это ты болван, ибо твой мозг слишком скуден для того, чтобы показать, что диагональ квадрата меньше двух его сторон.
Если читатель обратится к приведенному здесь рисунку, то ему легче будет следить за аргументами Кармелита. Предположим, что сторона поля равна 100 ярдам; тогда расстояние вдоль двух сторон от А до В и от В до С равно 200 ярдам. Кармелит взялся доказать, что расстояние по диагонали от А до С также равно 200 ярдам. Если мы будем двигаться вдоль пути, показанного на рис. 1, то, очевидно, пройдем то же расстояние, ибо длина каждого из восьми прямых участков равна в точности 25 ярдам. Аналогично зигзаг на рис. 2 состоит из 10 прямых участков, по 20 ярдов в каждом; значит весь путь равен 200 ярдам. Не важно, сколько прямолинейных участков будет в нашем зигзаге; результат, совершенно ясно, будет тем же самым. Так, на рис. 3 «ступеньки» очень малы, и все же расстояние равно 200 ярдам. То же происходит на рис. 4 и будет происходить даже в том случае, когда «ступеньки» мы сможем различить лишь под микроскопом. Продолжая этот процесс дальше, говорил Кармелит, мы будем выпрямлять наш зигзагообразный путь до тех пор, пока он не превратится в совершенно прямую линию; а отсюда следует, что длина диагонали квадрата равна сумме длин двух его сторон.
Но это заведомо ложное утверждение; его абсурдность мы можем проверить с помощью непосредственного измерения, если у нас остаются какие-то сомнения, И все же Пристав ни за что не мог опровергнуть Кармелита, отчего пришел в такую ярость, что, не вмешайся другие паломники, дело кончилось бы дракой. Быть может, читатель сразу обнаружит слабое место в рассуждениях Кармелита?
29. Головоломка Чосера. Чосер сам сопровождал паломников. Будучи математиком и человеком вдумчивым, он чаще всего ехал молча, занятый своими мыслями. «Зачем на всех глядишь, приятель, косо И едешь так, уставясь в землю носом?» – поднял его на смех Трактирщик. На просьбу рассказать историю поэт ответил длинной и неуклюжей поэмой, пародирующей рыцарские романы того времени. После двадцати четырех стихов компания отказалась слушать ее дальше и потребовала рассказа в прозе. Интересно, что в «Пролог Священника» Чосер на самом деле ввел небольшую астрономическую задачу. На современном языке она звучит примерно так:
«Солнце спустилось с южного меридиана так низко, что, на мой взгляд, оно находилось не более чем в двадцать девятом градусе. Я подсчитал, что было около четырех часов пополудни, поскольку при моем росте в шесть футов моя тень достигала примерно одиннадцати футов. В то же время высота луны (она находилась в средней фазе), когда мы вступили на западную окраину деревни, все возрастала». Если бы читатель взял на себя труд вычислить местное время, то с точностью до минуты оно равнялось бы 3 час. 58 мин., а день года по новому стилю был 22 или 23 апреля. Это свидетельствует о точности Чосера, поскольку в первой же строке «Рассказов» упоминается о том, что паломничество совершалось в апреле. По-видимому, они выехали 17 апреля 1387 г., как и утверждалось в головоломке 23.
Хотя Чосер придумал эту маленькую головоломку и записал ее для своих читателей, он не предлагал ее своим приятелям-паломникам. Головоломка же, которую он им предложил, была гораздо проще – ее можно было бы назвать географической.
– Когда в 1372 г., – сказал он, – я был отправлен в Италию в качестве посла нашего государя, короля Эдуарда III, то посетил Франческо Петрарку. Прославленный поэт взял меня с собой на прогулку к вершине одной горы. К моему великому удивлению, он мне продемонстрировал, что на вершине горы в кружку вмещается меньше жидкости, чем ее вмещалось в долине. Прошу вас, скажите, чтобы это могла быть за гора с таким странным свойством?
Элементарное знакомство с географией поможет правильно ответить на этот вопрос.
30. Головоломка Каноника. Этот персонаж присоединился к компании по дороге и приветствовал ее словами: «Да охраняет Вас крест Христов; я вас хотел Догнать, Чтоб в Кентербери путь свой продолжать В приятном обществе совместно с вами». Разумеется, его пригласили присоединиться к компании, с тем, однако, чтобы он придумал головоломку. Каноник показал им ромбовидное расположение букв, представленное на рисунке, и сказал:
– Я называю это головоломкой крысолова. Сколькими различными способами можете вы прочитать фразу «Was it a rat I saw» (He крысу ли я видел?)?
Вы можете двигаться в любом направлении вперед и назад, вверх и вниз, но только любые две последовательные буквы должны находиться рядом друг с другом.
31. Головоломка Эконома. «Удачливый во всем судейского подворья Эконом», который присоединился к компании паломников, был на редкость ловким и умным человеком. «В его подворье тридцать клерков жили, И хоть меж них законоведы были… Мог Эконом любого околпачить, Хоть научились люд они дурачить».
Случилось, что во время одной из остановок Мельник и Ткач сели перекусить. Мельник достал пять караваев хлеба, а ткач – три. Эконом попросил разрешения разделить с ними трапезу. Наевшись, он выложил восемь монет и сказал с легкой улыбкой:
– Решите между собой, как справедливо разделить эти деньги. Это как раз головоломка для вашего ума.
Последовал оживленный спор, к которому присоединились почти все паломники. Мажордом и Пристав стояли на том, что Мельник должен получить пять монет, а Ткач – три; простоватый Пахарь предлагал явную нелепость – чтобы Мельник получил семь, а Ткач только одну монету; тогда как Плотник, Монах и Повар считали., что монеты следует поделить поровну. Яростно выдвигались и другие предложения, пока наконец все не решили спросить у Эконома, как мастака в таких вопросах, что бы сделал он сам. Решение Эконома было совершенно справедливым. В чем оно состояло? Разумеется, все трое съели одинаковые порции хлеба»
Головоломные времена Солвэмхолле
Каждый, кто слышал о замке Солвэмхолл, о царивших там в давние времена странных обычаях и церемониях, не удивится тому, что сэр Хьюг де Фортибус любил всевозможные загадки и головоломки. Сам сэр Роберт Ридлсдейл сказал однажды:
– Клянусь костями святого Джинго, у этого сэра Хьюга острый ум. Я так и не смог придумать головоломки, которую бы он не решил. – В связи с этим особенно приятно, что обнаруженные недавно в архиве семьи де Фортибус свитки и документы позволяют мне предложить читателям несколько задач, над которыми ломали голову в добрые старые времена. Задачи подобраны так, чтобы удовлетворить любой вкус, и хотя в большинстве своем достаточно легки, чтобы заинтересовать любителей действительно головоломных головоломок, но несколько из них, быть может, окажутся достойными внимания тех, кто более искушен в этих делах.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.