Научно-популярные статьи о бане - Юрий Михайлович Хошев Страница 2
- Категория: Научные и научно-популярные книги / Альтернативная медицина
- Автор: Юрий Михайлович Хошев
- Страниц: 13
- Добавлено: 2023-12-08 16:11:48
Научно-популярные статьи о бане - Юрий Михайлович Хошев краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Научно-популярные статьи о бане - Юрий Михайлович Хошев» бесплатно полную версию:Научно-популярные статьи о бане.
Хошев Ю. М.
Опубликованы в периодическом журнале БАНБАС (Бани и бассейны).
Климатические характеристики бани.
Аэродинамический расчет бани.
Тепловое воздействие бани. Научно-популярная статья, в двух частях.
Научно-популярные статьи о бане - Юрий Михайлович Хошев читать онлайн бесплатно
Что такое сухой или влажный воздух, мы сразу интуитивно понимаем кожей. Но что такое влажность воздуха, как ее измерить?
Первичным объективным показателем является абсолютная влажность воздуха — массовая концентрация молекул воды в воздухе, что есть массовое содержание газообразной воды (водяного пара) в воздухе (например, количество килограммов или литров жидкой воды, испаренной в одном кубическом метре воздуха). Если водяного пара в воздухе мало, то воздух сухой, если много — влажный. Но что значит много? Например, 100 г газообразной воды в одном кубическом метре воздуха — это много? И не много, и не мало, просто именно столько и ничего больше. Но если спросить, много ли — 100 г газообразной воды в одном кубическом метре воздуха при температуре 40 °C, то можно определенно сказать, что очень много, так много, как никогда не бывает.
Снова вспомним школьный курс физики и проведем простейший эксперимент. Нальем в кастрюлю воду и, закрыв крышкой, поставим в термостат-духовку, нагретую до 40 °C. По мере нагрева воды до 40 °C замеряем абсолютную влажность воздуха под крышкой, которая, повышаясь, наконец достигает некоторого предельного максимального значения 0,05 кг/м3, называемого плотностью насыщенного пара при 40 °C. Затем поднимаем температуру термостата до 50 °C, абсолютная влажность воздуха под крышкой также повышается и достигает уже другого максимального значения 0,08 кг/м3, называемого плотностью насыщенного пара при 50 °C. В результате продолжения эксперимента получаем следующую таблицу (таблица 2).
Таблица 2
При 100 °C давление насыщенного пара достигает атмосферного значения, весь объем кастрюли заполняется парами воды, воздуха под крышкой не остается.
Теперь начнем охлаждать термостат. Абсолютная влажность воздуха (содержание водяных паров в воздухе над водой под крышкой) начинает сокращаться в полном соответствии с таблицей. Куда же пропадает вода из воздуха? Так же, как и при нагревании, вода в воздух попадала путем испарения, так и сейчас — излишний пар конденсируется, то есть сжижается, превращается обратно в воду. Конденсироваться пар может на охлаждающихся стенках кастрюли в виде капель воды (то есть в виде росы), а также в объеме охлаждающегося воздуха в виде тумана (капелек воды в воздухе). При этом температура, например, 40 °C называется точкой росы для абсолютной влажности воздуха 0,05 кг/м3, так как при этой температуре начинает выделяться роса. Из таблицы 2 следует, что содержание воды в воздухе в виде водяного пара не может быть сколь угодно большим и ограничено при каждой температуре неким максимальным значением, которое быстро растет с температурой. Наиболее естественно определить степень влажности (сухости) воздуха отношением реальной абсолютной влажности воздуха в данный момент к той максимально достижимой абсолютной влажности воздуха, которая рано или поздно установится при этой температуре. Называется это расчетное отношение относительной влажностью. Оно имеет смысл лишь при указании температуры, на которую рассчитано, и измеряется в процентах. Если относительная влажность воздуха равна нулю, то водяных паров в воздухе совсем нет (абсолютно сухой воздух). Если относительная влажность равна 100 %, то воздух максимально влажен в том смысле, что при этой температуре процессы испарения более невозможны (но вновь становятся возможными при повышении температуры).
Таким образом, процесс повышения абсолютной влажности воздуха под крышкой кастрюли, если в ней есть вода, характеризуется повышением относительной влажности воздуха от нуля до ста процентов. При этом длительное нахождение человека в воздухе с температурой, например, 40 °C и влажностью 100 % эквивалентно нахождению в воде, нагретой до 40 °C. Относительная влажность указывает, может ли увеличиться влажность воздуха, если воздух привести в контакт с водой той же температуры, и на сколько она может увеличиться, то есть фактически характеризует потенциальную влагоемкость воздуха.
Из школы — в баню
Конкретизируем эти абстрактные рассуждения и рассмотрим в качестве примера турецкую баню, представляющую собой каменное помещение, нагреваемое горячим полом — гипокаустом. По существу, турецкая баня является той же каменной «кастрюлей», которую мы для анализа использовали выше. Проветрим сухую баню наружным атмосферным воздухом с температурой, например, 30 °C и абсолютной влажностью 0,024 кг/м3 (что соответствует значению относительной влажности воздуха 80 %), затем, сохраняя полы сухими, закроем двери и нагреем баню до 40 °C. Воздух в бане тоже нагреется до 40 °C и сохранит ту же абсолютную влажность 0,024 кг/м3, так как в бане нет воды, которая могла бы испаряться. При температуре 40 °C абсолютная влажность 0,024 кг/м3 соответствует значению относительной влажности 48 %. Как мы видели при обсуждении психрометрической таблицы, при такой относительной влажности баня при увлажнении тела представляется очень холодной.
Окатимся горячей водой с температурой 40 °C или просто плеснем воду на горячий пол. Относительная влажность 48 % означает, что при этой температуре в воздух может испариться еще 52 % воды. Вот она и будет испаряться, пока абсолютная влажность не достигнет табличного для 40 °C значения плотности насыщенного пара 0,05 кг/м3, отвечающего относительной влажности воздуха 100 %. Баня становится горячей, такой, как и полагается быть турецкой бане.
Теперь вытрем все полы насухо и тряпки удалим из помещения бани. Наше тело продолжает потеть, но пот не испаряется, так как воздух взять в себя воды при этой температуре больше не может. Системы самотерморегуляции тела оказываются неработоспособными. Температура кожи уже давно равна 40 °C, но и температура тела (его внутренних органов) неуклонно растет до 40 °C, приближается состояние теплового удара.
Слегка проветрим баню, влажность воздуха снизится. Станет полегче, так как пот начнет испаряться, охлаждая тело. Но испаряющаяся влага рано или поздно вновь приведет к повышению влажности воздуха, причем лишь до 0,05 кг/м3, когда все процессы испарения вновь прекратятся.
Попробуем нагреть всю баню с сухими полами и с воздухом фиксированной влажности 0,05 кг/м3 до более высоких температур. При этом относительные влажности воздуха могут быть рассчитаны как частное от деления значения реальной абсолютной влажности 0,05 кг/м3 на значения плотности насыщенного пара при разных температурах. Полученную таблицу (таблица 3), а также соответствующую кривую на рис. 1 назовем хомотермальными (от латинских слов homo (человек) и thermae (теплые купальни).
Мы видим из таблицы, что одна и та же баня с одним и тем же воздухом и с одними и теми же значениями концентрации паров воды может быть то сухой (при высоких температурах), то влажной (при низких температурах). При температурах ниже 40 °C может даже выпасть конденсат, в том числе и в виде тумана.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.