К.ПРИБРАМ - ЯЗЫКИ МОЗГА Экспериментальные парадоксы и принципы нейропсихологии Страница 12

Тут можно читать бесплатно К.ПРИБРАМ - ЯЗЫКИ МОЗГА Экспериментальные парадоксы и принципы нейропсихологии. Жанр: Научные и научно-популярные книги / Медицина, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
К.ПРИБРАМ - ЯЗЫКИ МОЗГА Экспериментальные парадоксы и принципы нейропсихологии

К.ПРИБРАМ - ЯЗЫКИ МОЗГА Экспериментальные парадоксы и принципы нейропсихологии краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «К.ПРИБРАМ - ЯЗЫКИ МОЗГА Экспериментальные парадоксы и принципы нейропсихологии» бесплатно полную версию:
Перевод с английского Я. Н. Даниловой и Е. Д. ХомскойПод редакцией и с предисловиемдействительного члена АПН СССРА. Р. ЛурияИздательство «Прогресс» Москва 1975Редакция литературы по философииПеревод на русский язык с изменениями. "Прогресс"

К.ПРИБРАМ - ЯЗЫКИ МОЗГА Экспериментальные парадоксы и принципы нейропсихологии читать онлайн бесплатно

К.ПРИБРАМ - ЯЗЫКИ МОЗГА Экспериментальные парадоксы и принципы нейропсихологии - читать книгу онлайн бесплатно, автор К.ПРИБРАМ

Важно также место электродов при электрофизиологической записи. Так, в моей лаборатории мы обнаружили, что привыкание действительно характеризуется затуханием ответа на любом уровне зрительной системы обезьяны от сетчатки до коры головного мозга. Однако при разном расположении электродов в коре одни из них дают признаки ослабления, другие – увеличения ответа, а третьи не обнаруживают никаких изменений. Следовательно, при повторении стимула в коре возникает изменение структур возбуждения; растормаживание разрушает эту структуру. Если бы мы смешали записи от всех кортикальных отведений или сделали бы записи от черепа, а не через электроды, вживленные непосредственно в кору, мы не смогли бы обнаружить этот эффект, о чем действительно сообщают некоторые исследователи.

Много работ было выполнено и на клеточном уровне. Была произведена запись от отдельных клеток спинного мозга и других отделов мозга. Во многих местах были обнаружены нервные клетки с затуханием ответа при повторении стимуляции. Такая реакция возникает даже у беспозвоночных, например у Aplesya Cali-fornica (Pinsker et al., 1970; Kupfermann et al., 1970; Castellucci et al., 1970). Однако можно ли у всех нейронов, у которых обнаружено привыкание, вызвать явления растормаживания? Недавно полученные Р. Томпсоном данные (Grove, Thompson, 1970) говорят о том, что можно различать по крайней мере три группы нейронов: нейроны, у которых реакция просто затухает; нейроны, реакция которых первоначально усиливается; и нейроны, характеризующиеся сначала усилением, а затем затуханием реакции. -Лишь у последней группы возможно растормаживание. Такие эксперименты до сих пор были проведены только на спинном мозге. Другие отчеты об экспериментах на структурах ствола мозга (верхнее двухолмие) свидетельствуют о том, что возможно, хотя и не обязательно, что одиночные нейроны с затухающими ответами в этой структуре могут обнаруживать растормаживание (Gerbrandt, Bures, Buresova, 1970).

Эти данные, а также другая работа Томпсона (Thompson and Spenser, 1966) показывают, что привыкание связано с взаимодействием нескольких нейронов. Томпсон использовал препарат, принесший известность Шеррингтону: животное, у которого спинной мозг отделен от головного. Повторная стимуляция электрическими залпами входных волокон спинного мозга приводит к постепенному уменьшению рефлекса сгибания конечности (вызванного подобно коленному рефлексу у больного, подвергающегося врачебному осмотру). Этот препарат создавал идеальные условия для изучения места и физиологической природы тех изменений в спинном мозге, которые связаны с привыканием (рис. III-2). Ни входные, ни выходные нейроны не участвуют в изменении рефлекса и, следовательно, не ответственны за привыкание: решающее значение имеют интернейроны, связывающие нейроны входа и выхода. Во-вторых, вопреки ожиданию введение фармакологических веществ, обычно используемых нейрофизиологами при изучении пре- и постсингштических .эффектов, не оказывало никакого влияния; эти вещества не приводили к затуханию ответа, свидетельствующему о привыкании. Это значит, что привыкание не связано с изменениями медленных потенциалов соединительных контактов. Сходные результаты получил Соколов (Соколов, Пакула и Аракелов, 1970). Он обнаружил, что медленные потенциалы мембраны нейрона и генераторные потенциалы, записанные от его аксона, которые дают начало нервным импульсам, могут изменяться независимо друг от друга. Кроме того, полученные им результаты свидетельствуют о том, что механизм генерации нервных импульсов может обнаружить привыкание.

Рис. III-2, Затухающий ответ эфферентной единицы на повторяющееся электрическое раздражение кожи (Thompson, 1967).

Таким образом, в некоторых случаях процессы затухания, лежащие в основе привыкания, по-видимому, связаны не с пре- и постсинаптическими изменениями, а с какими-то другими механизмами. Однако в других случаях были получены противоположные результаты. Иногда \по не всегда) этот процесс связан с уменьшением или увеличением притока медиаторных веществ,

С. Шарплесс (1967, 1969) показал, что при стимуляции нейронов у позвоночных не возникает ни сенситизации, ни десенси-тизации их сияаптических мембран. Напротив, Э. Кендел (Castel-lucci et al., 1970; Kupfermann et al., 1970; Pinsker et al., 1970) нашел, что привыкание и его нарушение у беспозвоночных локализуются в пресинаптических окончаниях и предполагают участие эффективного механизма секреции возбуждающих веществ в синапсах.

Стало быть, полученные данные не согласуются между собой. Необходимо найти ответ на целый ряд вопросов. Каким образом вообще механизм возникновения возбуждений может испытывать влияния, если не через посредство медленных потенциалов? Запускается ли внутри нейрона некоторый биохимический процесс и если да, то как (особенно если мы имеем дело с системой, которая обычно обнаруживает спонтанную активность и, следовательно, каким-то образом генерирует потенциалы)? Какова природа биохимических изменений и как они развиваются во времени? Соколов предполагает, что в этом механизме участвует РНК. Если он прав, то не связано ли привыкание с первыми этапами индукционного процесса или механизм привыкания совершенно независим от процесса постоянного хранения следов памяти? Возможно, что механизм постоянного хранения действует только при условии длительного и повторного привыкания. Если это так, то как это происходит? Наконец, каким образом изменение в структуре нервного импульса, вызываемого привыканием, действует на микроструктуру медленного потенциала на следующем синаптическом уровне? Чтобы ответить на некоторые из зтих вопросов, рассмотрим нейронную организацию сетчатки, этого маленького «кусочка мозга», который является гораздо более доступным для изучения, чем центральная нервная система.

АДАПТАЦИЯ

То, что мы воспринимаем из нашего окружения, зависит от возможностей наших рецепторных органов, которые накладывают свои ограничения на восприятие той или другой конфигурации воздействия. Так, оптическая система глаза фокусирует на сетчатку ограниченный диапазон электромагнитных волн; звуковые волны оказывают давление на жидкость в улитке уха; разного рода деформации кожи возбуждают свободные или специализированные нервные окончания в соматической системе и т. д. Эти формы энергетических изменений взаимодействуют « собственной активностью рецепторов и вызывают ее изменения, которые являются достаточно надежными, чтобы организм мог их идентифицировать как результат внешних воздействий.

Воспользуемся еще раз простой моделью протекания речевого акта, описанного в гл. I. Там участвовали две основные переменные: устойчивое состояние и дискретные переменные. Эта модель была применена к функции мозга, сейчас мы используем ее для сенсорного механизма. Заменим состояние постоянного напряжения голосовой связки постоянным распределением различных видов энергии по рецепторным поверхностям, дискретные колебания воздуха – дискретными нейронными разрядами в форме нервных импульсов. Короче говоря, предположим, что то, что происходит в органе чувств, совсем не отличается от того, что происходит в нервной системе, и что нейрофизиология сенсорных процессов может служить миниатюрной моделью ориентировочного рефлекса и процесса привыкания.

Всем известен процесс адаптации: ощущение при погружении в слишком горячую ванну и осознание спустя несколько минут, что для полного удовольствия следовало бы добавить еще теплой воды; исчезновение ощущения давления на кожу, ожидание в течение нескольких минут после входа в темный зал кинотеатра,, прежде чем мы что-либо увидим и будем способны найти свободное место. Можно привести много примеров сенсорной адаптации. Наиболее яркий из них тоже парадоксален и был получен в экспериментах, при которых проецируемый на сетчатку образ стабилизировался с помощью зеркал и линз (Ditchburn and Ginsborg, 1952; Riggs, Rattliff, Cornsweet and Comsweet, 1953).

Удивительно, что наши глаза находятся в постоянном движении – даже тогда, когда мы фиксируем точку. Эти небольшие, подобные тремору движения глаз можно зарегистрировать. Такие движения у некоторых людей настолько велики, что заметны другим, но – и в этом-то и состоит парадокс – человек с такими усиленными движениями глаз не знает о них до тех пор, пока не обратит на них внимание, когда смотрит на себя в зеркало (что обычно заставляет его обратиться к врачу, который, если он знаком с такой аномалией, успокаивает своего пациента, говоря, что это не опасно). Движения глаз препятствует тому, чтобы каждый из рецепторных элементов в течение какого-то отрезка времени возбуждался бы одним и тем же соотношением света и темноты, конечно, за исключением таких ситуаций, как плотный туман, когда свет теряет форму и функция зрения сводится к различению яркости. Чтобы изучить последствия нарушений таких движений глаз, на склере, белой части глазного яблока, не обладающей чувствительностью, укрепляют зеркало. Изображение проецируется на зеркало, отражается через призму на гладкую поверхность экрана, на которую смотрит наблюдатель. Призма корректирует отклонения рассматриваемого объекта, соответствующие отклонениям глазного яблока. Благодаря этому изображение, проецируемое на поверхность, всегда падает на одно и то же место сетчатки и образ стабилизируется (рис. Ш-3).

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.