Марина Краснова - Полный справочник санитарного врача Страница 14

Тут можно читать бесплатно Марина Краснова - Полный справочник санитарного врача. Жанр: Научные и научно-популярные книги / Медицина, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Марина Краснова - Полный справочник санитарного врача

Марина Краснова - Полный справочник санитарного врача краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Марина Краснова - Полный справочник санитарного врача» бесплатно полную версию:
Полный справочник санитарного врача содержит подробные сведения, касающиеся санитарной охраны окружающей среды населенных мест, гигиенические аспекты питания, водоснабжения, почвы. В отдельной главе рассматриваются гигиена детей и подростков, профессиональные заболевания, возникающие в результате воздействия на организм неблагоприятных факторов производственной среды. Предназначен для студентов медицинских вузов и врачей всех специальностей.

Марина Краснова - Полный справочник санитарного врача читать онлайн бесплатно

Марина Краснова - Полный справочник санитарного врача - читать книгу онлайн бесплатно, автор Марина Краснова

3. Равномерность и естественность уровня освещенности должны обеспечиваться в помещении во избежание частой переадаптации и утомления зрения.

4. Освещение не должно создавать блесткости как самих источников света, так и других предметов в пределах рабочей зоны.

Таблица 14

Нормируемые показатели естественного, искусственного и совмещенного освещения основных помещений общественного здания, а также сопутствующих им производственных помещений (СанПиН 2.2.1/2.1.1.1278-03)

Примечание.

<*> В жилых домах и квартирах приведенные значения освещенности, показателя дискомфорта и коэффициента пульсации являются рекомендуемыми.

<**> Норма дана для ламп накаливания.

Проектирование системы общего искусственного освещения представляет собой последовательное решение таких задач, как:

1) выбор типа источников света (ламп);

2) выбор типа светильников;

3) размещение светильников в плане помещения и определение их количества;

4) расчет светового потока ламп светильников;

5) выбор стандартной лампы.

Исходными данными для расчета являются:

1) гигиенические нормы освещенности Еmin(лк);

2) габаритные размеры производственного помещения A x B x H (м);

3) коэффициенты отражения рабочих поверхностей, поверхностей стен и потолка.

Нормативные документы рекомендуют во всех случаях в качестве источников света использовать люминесцентные лампы.

Их достоинство:

1) высокая световая отдача (до 75 лм/вт и более);

2) продолжительный срок службы (до 10 000 ч);

3) малая яркость светящейся поверхности;

4) спектральный состав излучаемого света.

Одним из недостатков таких ламп является высокая пульсация светового потока, вызывающая утомление зрения. Поэтому коэффициент пульсации освещенности регламентирован в пределах 10–20 % в зависимости от разряда зрительной работы.

Светильники выбирают с учетом характеристик рабочей среды в помещении.

Освещенность на рабочем месте должна соответствовать характеру зрительной работы, который определяется следующими тремя параметрами:

1) объектом различимости (наименьший размер рассматриваемого предмета);

2) фоном (поверхность, прилегающая непосредственно к объекту различения);

3) контрастом объекта с фоном, характеризующимся соотношением яркостей рассматриваемого объекта.

При оборудовании помещения необходимо учитывать воздействие на психику человека цвета. Цветовая гамма рабочего помещения должна быть выдержана в спокойных, мягких тонах.

Для получения равномерного освещения светильники располагают симметричными рядами, при этом расстояние между светильниками в ряду, между рядами светильников и от края светильников до стен не должно превышать:

L = λ x h,

где L – расстояние между светильниками в ряду и между рядами светильников;

λ – коэффициент, зависящий от типа светильников;

h – высота расположения светильников над рабочей поверхностью, м.

Световой поток одного светильника определяется методом коэффициента использования светового потока по формуле:

Fсв = (Еmin x S x К x Z) / (Nсв x g),

где Еmin – гигиеническая норма освещенности;

S – площадь помещения;

К – коэффициент запаса, зависящий от запыленности воздуха в помещении;

Z – коэффициент неравномерности освещения;

N – количество светильников;

g = [A x B] / [h (A + B)].

Световой поток лампы определяется в зависимости от количества ламп в светильнике.

Таким образом, световой поток от одного светильника равен:

Fсв = (200 x 180 x 1,5 x 1,1) / (1 x 1,8) = 3300.

В помещении применимы люминесцентные лампы дневного света типа ЛД65-4.

Нормирование естественного освещения производится с помощью коэффициента естественной освещенности (КЕО), выраженного в процентах:

КЕО = ЕВ x 100 / ЕН,

где ЕВ – освещенность точки внутри помещения, лк;

ЕН – одновременная наружная освещенность горизонтальной поверхности рассеянным светом небосвода (без учета прямых солнечных лучей), лк. Значения КЕО при естественном и совмещенном освещении рабочих поверхностей приведены в табл. 15.

Таблица 15

Коэффициент естественного освещения при естественном и совмещенном освещении рабочих поверхностей

Шум в селитебной зоне

Общее понятие о шуме

Шумы относятся к числу вредных для человека загрязнений окружающей среды. Представление о шуме включает всякие неприятные или нежелательные звуковые воздействия, мешающие восприятию полезных сигналов, нарушающие тишину, оказывающие вредное или раздражающее влияние на организм человека, снижающие его работоспособность.

Шум – это беспорядочное сочетание звуков различной частоты и интенсивности.

Звук – колебания частиц воздушной среды, которые воспринимаются органами слуха человека в направлении их распространения. Звук как физический процесс представляет собой волновое движение упругой среды. Ощущает человек механические колебания с частотами от 20 до 20 000 Гц.

С возрастом этот диапазон суживается, особенно за счет понижения слышимости высоких тонов, до частот 12 000 Гц и даже 6000–8000 Гц.

Ультразвуковой диапазон – свыше 20 кГц, инфразвук – меньше 20 Гц, устойчивый слышимый звук – 1000–3000 Гц.

Физические характеристики шума:

1) интенсивность звука, J (Вт/м2);

2) звуковое давление, P (Па);

3) частота, f (Гц).

При распространении звуковых волн имеет место перенос звуковой энергии, величина которого определяется интенсивностью звука.

Интенсивность звука – звуковая мощность на единицу площади, передаваемая в направлении распространения звуковой волны, количество энергии, переносимое звуковой волной за 1 с через площадь в 1 м2, перпендикулярно распространению звуковой волны. J – интенсивность в точке измерения (Вт/м2).

Интенсивность звука связана со звуковым давлением выражением.

I=VP,

где P – среднеквадратичное звуковое давление;

V – среднеквадратичное значение колебательной скорости частиц в звуковой волне.

Звуковое давление – дополнительное давление воздуха, которое возникает при прохождении через него звуковой волны. Звуковое давление – переменная составляющая давления воздуха, возникающая вследствие колебаний источника звука, накладывающаяся на атмосферное давление.

Минимальное звуковое давление и минимальная интенсивность звуков, едва различимых слуховым аппаратом человека, называются пороговыми.

Чувствительность слухового аппарата человека наибольшая в диапазоне 2000–5000 Гц. Эталонный звук – звук частотой 1000 Гц. При этой частоте порог слышимости по интенсивности 10–12 Вт/м2, а соответствующее ему звуковое давление р0– 210 Па. Порог болевого ощущения Iтах =10 Вт/м2. Различие в 1013 раз.

Учитывая протяженный частотный диапазон (20–20 000 Гц) при оценке источника шума, используется логарифмический показатель, который называется уровнем интенсивности (дБ).

Уровень звука обычно выражают в дБ.

При расчетах и нормировании используется такой показатель, как уровень звукового давления (дБ).

P – звуковое давление в точке измерения (Па);

P0 – пороговое значение 2 x 10–5 (Па).

При распространении звуковых волн в воздухе в каждой точке звукового поля возникают попеременные сжатие и разрежение, что приводит к изменению давления в среде по сравнению с атмосферным (статическим) давлением. Разность между атмосферным давлением и давлением в данной точке звукового поля называется звуковым давлением P (Па).

Звуковое давление, воспринимаемое ухом человека, может меняться от порога слышимости до болевого порога в 10E + 10 раз. При этом ощущение степени изменения звукового давления (субъективное восприятие человеком) согласно психофизическому закону Вебера – Фехнера почти совпадает с логарифмической кривой. Поэтому в акустике для оценки звуковых воздействий на человека принято использовать не абсолютные величины изменения звукового давления, а относительные – логарифмические.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.