Брайан Клегг - Вселенная внутри вас Страница 25

Тут можно читать бесплатно Брайан Клегг - Вселенная внутри вас. Жанр: Научные и научно-популярные книги / Медицина, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Брайан Клегг - Вселенная внутри вас

Брайан Клегг - Вселенная внутри вас краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Брайан Клегг - Вселенная внутри вас» бесплатно полную версию:
Мы привыкли считать, что наука – это что-то далекое от нас, что ею занимаются ученые в лабораториях, заставленных странными приборами, и что для нее необходимы огромные и невероятно сложные устройства типа Большого адронного коллайдера. Но у каждого из нас есть своя научная лаборатория – собственное тело, представляющее собой сверхсложную структуру, в функциях которой находят отражение самые различные явления науки и природы.В этой книге вы будете использовать свое тело как научный инструмент, позволяющий раскрыть многие тайны Вселенной, и, поверьте, вас ждут поразительные факты и открытия.

Брайан Клегг - Вселенная внутри вас читать онлайн бесплатно

Брайан Клегг - Вселенная внутри вас - читать книгу онлайн бесплатно, автор Брайан Клегг

Периодическая таблица элементов

Данный подход доказал свою правоту, когда Менделеев предсказал существование новых элементов, которые до этого были неизвестны. В таблице были пробелы, и Менделеев посчитал, что их должны занять атомы, обладающие схожими свойствами с уже известными элементами данной группы. Так, например, под кремнием оказалось пустое место, и Менделеев назвал недостающий элемент экакремнием (от санскр. эка – один).

Вскоре действительно был открыт элемент, заполнивший пустое место в таблице. Его назвали германием. У этого элемента есть ряд схожих черт с кремнием (оба в настоящее время используются для изготовления транзисторов и других электронных устройств), и его химические свойства точно совпали с предсказанными Менделеевым.

Познакомьтесь с элементом № 114

Периодическая таблица вплоть до нынешнего дня используется для того, чтобы определить химические свойства новых элементов, хотя и не все они так предсказуемы, как у германия. Взять хотя бы элемент с порядковым номером 114. К моменту написания книги он все еще не имеет настоящего названия[1] и проходит под «кличкой» унунквадий (от лат. unum-unum-quartum – один-один-четыре). К настоящему времени самый тяжелый элемент, имеющий название, – это коперниций (порядковый номер 112).

Сверхтяжелый элемент № 114 никогда не попадет в ваш желудок. Он не встречается в природе. Самым тяжелым из природных элементов является уран (порядковый номер 92). Все более тяжелые элементы получены искусственно – либо в ядерных реакторах, либо на ускорителях частиц. Для создания сверхтяжелых элементов требуются специальные условия, потому что сила, удерживающая ядро атома (сильное взаимодействие), должна преодолевать силу отталкивания, возникающую между большим количеством положительно заряженных протонов.

Сильное взаимодействие имеет один существенный недостаток: оно проявляется лишь на очень-очень малом расстоянии. Таким образом, 92 протона в атоме урана (порядковый номер элемента показывает, сколько протонов находится в ядре и сколько электронов образуют его оболочку) – это предел, при превышении которого сильное взаимодействие уже не может удержать частицы ядра вместе. Все более тяжелые элементы, как правило, очень нестабильны.

Время жизни большинства сверхтяжелых элементов составляет тысячные или даже миллионные доли секунды. Затем они распадаются. Однако унунквадий находится на так называемом «островке стабильности», то есть в той части таблицы, где атомы проявляют способность сохраняться несколько дольше, поскольку количество частиц в ядре позволяет упаковать их в более или менее стабильную форму. Изотоп элемента № 114, имеющий атомную массу 289, способен прожить несколько секунд.

Изотопы, как уже говорилось выше, – это варианты одного и того же элемента, отличающиеся друг от друга количеством нейтронов в ядре. Ядро самого простого из всех атомов – водорода – состоит из одного-единственного протона. Если добавить к нему нейтрон, то полученный элемент по-прежнему будет проявлять все химические свойства водорода, так как у него только один электрон, а именно от него зависит, как атом будет вести себя с другими веществами. Однако благодаря лишнему нейтрону ядро станет тяжелее и будет по-другому вести себя в ядерных реакциях. Вместо водорода мы получили его изотоп – дейтерий.

Поскольку практически вся масса атома сосредоточена в ядре, атомная масса элемента представляет собой сумму количества протонов и нейтронов. Поэтому в ядре изотопа унунквадия с атомной массой 289 содержится 175 нейтронов (289–114 = 175).

Элемент № 114 был открыт в 1998 году в Объединенном институте ядерных исследований в Дубне (Россия). В первом эксперименте был получен всего один атом этого элемента, и, хотя с тех пор был открыт целый ряд его изотопов, каждый раз речь шла всего о нескольких атомах. С учетом их малого количества и того обстоятельства, что существуют они всего несколько секунд, мы пока не имеем представления о том, как выглядит унунквадий. Предполагается, что он должен быть серебристо-серым металлом, как и большинство элементов из этой области периодической таблицы.

Тяжелый металл или благородный газ?

Периодическая таблица предсказывает, что унунквадий должен вести себя приблизительно, как свинец. По терминологии Менделеева, он и назывался раньше экасвинцом, так как находится в таблице прямо под ним. Однако, как ни странно, несмотря на то, что мы располагаем всего несколькими атомами унунквадия, высказываются предположения, что на самом деле он по своим свойствам должен быть больше похож на инертный газ, чем на металл.

Благородные, или инертные, газы составляют самую «мирную» последнюю колонку периодической таблицы. Их внешняя электронная оболочка заполнена до отказа, поэтому они не проявляют интереса к вступлению в реакцию с другими элементами. В их число входят, например, такие газы, как гелий, неон и ксенон. Они используются в различных типах осветительных устройств, однако более известным является гелий. Его необычность заключается в том, что впервые он был обнаружен на Солнце и лишь затем его нашли на Земле. Это объясняется тем, что гелий не так-то легко уловить в воздухе, поскольку он очень быстро поднимается в верхние слои атмосферы. Тем не менее этот элемент достаточно распространен, и мы можем купить баллончик с гелием, чтобы надуть воздушный шарик. Большая часть гелия извлекается из природного газа в ходе его добычи.

Но если у нас так мало материала для изучения, как же мы можем утверждать, что унунквадий ведет себя скорее как инертный газ, чем как металл?

Атомы элемента пропускают через тонкую трубку, покрытую внутри слоем золота. На одном конце трубка имеет комнатную температуру, которая последовательно понижается до ‑185 °С на другом конце. По мере прохождения по трубке атомы теряют энергию за счет понижения температуры, и их колебания становятся все меньше.

При этом мы ожидаем, что атомы металлов, например свинца, пройдут не слишком далеко и свяжутся с золотом в самом начале трубки. В то же время «необщительные» инертные газы проделают намного больший путь, прежде чем прикрепятся к стенке. Атомы элемента № 114 доходят до самого конца трубки, что позволяет сделать вывод о том, что они больше похожи на инертные газы, чем на свинец.

Это вовсе не значит, что периодическая система элементов дала сбой. Похоже, что на химию в данном случае начинает оказывать влияние теория относительности. Поскольку атомы тяжелых элементов содержат большое количество электронов, на внешних оболочках, которые расположены дальше всего от ядра, они должны двигаться быстрее обычного. Специальная теория относительности утверждает, что чем быстрее что-то движется, тем большую массу приобретает. Предполагается, что эти быстрые электроны приобретают достаточное количество дополнительной массы, чтобы изменить химические свойства вещества.

Превращение пищи в энергию

На что бы ни был похож унунквадий, вероятность его попадания в организм человека крайне низка, зато желудку приходится сталкиваться с огромным количеством других атомов. С технической точки зрения он выполняет в пищеварительной системе функцию предварительной переработки пищи, чтобы затем ее легче было превратить в энергию. В желудке пища подвергается воздействию соляной кислоты и ферментов – сложных химических веществ, которые специализируются на разложении белков. Получившаяся в итоге полупереваренная кашица поступает дальше в кишечник.

Предварительная переработка поступившей в организм пищи нужна для того, чтобы быстрее получить доступ к относительно простым веществам типа сахаров и жиров, состоящим из углерода, водорода и кислорода. В систему подается и дополнительный кислород, перенесенный кровью из легких. Он вступает в реакцию с сахарами и жирами, окисляя их. Мы не раз наблюдали в жизни реакцию окисления, глядя на огонь, дающий нам тепло. Реакция, происходящая в организме человека, – это фактически медленное химическое горение, в ходе которого кислород превращается в углекислый газ, воду и энергию, аккумулирующуюся митохондриями в химической форме.

Если сравнивать с животными, то у нас наблюдается одна важная особенность в подходе к еде. Перед тем как съесть продукты, мы их моем, очищаем и варим, чтобы они лучше усваивались.

Горячая еда – хорошая еда

Никто точно не знает, каким образом вареная пища заняла важное место в жизни человека. Обычно предполагается, что это произошло случайно, когда какое-то животное или зерна упали в огонь или оказались рядом с ним. Привлекательный запах, возможно, побудил людей подобрать и съесть поджаренную пищу, а приятный вкус привел их к выводу, что этот опыт имеет смысл повторить.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.