Сергей Бабичев - Медицинская микробиология, иммунология и вирусология Страница 35

Тут можно читать бесплатно Сергей Бабичев - Медицинская микробиология, иммунология и вирусология. Жанр: Научные и научно-популярные книги / Медицина, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте «WorldBooks (МирКниг)» или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Сергей Бабичев - Медицинская микробиология, иммунология и вирусология

Сергей Бабичев - Медицинская микробиология, иммунология и вирусология краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Сергей Бабичев - Медицинская микробиология, иммунология и вирусология» бесплатно полную версию:
Учебник состоит из семи частей. Часть первая – «Общая микробиология» – содержит сведения о морфологии и физиологии бактерий. Часть вторая посвящена генетике бактерий. В части третьей – «Микрофлора биосферы» – рассматривается микрофлора окружающей среды, ее роль в круговороте веществ в природе, а также микрофлора человека и ее значение. Часть четвертая – «Учение об инфекции» – посвящена патогенным свойствам микроорганизмов, их роли в инфекционном процессе, а также содержит сведения об антибиотиках и механизмах их действия. Часть пятая – «Учение об иммунитете» – содержит современные представления об иммунитете. В шестой части – «Вирусы и вызываемые ими заболевания» – представлены сведения об основных биологических свойствах вирусов и о тех заболеваниях, которые они вызывают. Часть седьмая – «Частная медицинская микробиология» – содержит сведения о морфологии, физиологии, патогенных свойствах возбудителей многих инфекционных заболеваний, а также о современных методах их диагностики, специфической профилактики и терапии.Учебник предназначен для студентов, аспирантов и преподавателей высших медицинских учебных заведений, университетов, микробиологов всех специальностей и практических врачей.5-е издание, исправленное и дополненное

Сергей Бабичев - Медицинская микробиология, иммунология и вирусология читать онлайн бесплатно

Сергей Бабичев - Медицинская микробиология, иммунология и вирусология - читать книгу онлайн бесплатно, автор Сергей Бабичев

Пигментные микроорганизмы

Способность образовывать пигмент присуща многим видам микроорганизмов. Как уже выше упоминалось, цианобактерии, некоторые виды архебактерий, а также серные и пурпурные бактерии имеют пигменты типа хлорофилла или бактериородопсина, с помощью которых они улавливают энергию Солнца. Различные виды других бактерий образуют пигменты желтого, оранжевого, красного, синего или черного цвета. Окраска колонии может быть связана как с пигментацией самих клеток, так и с выделением окрашенных веществ в питательную среду. Интенсивность образования пигментов зависит от состава питательной среды и условий культивирования микроорганизмов. Если пигмент не растворим в воде, окрашивается только культуральный налет; если же он водорастворим, окрашивается и питательная среда. Химическая природа пигментов разнообразна: каротиноиды относятся к ненасыщенным углеводородам, антоцианы и меланины – к ароматическим соединениям. Биологическая роль этих пигментов заключается, во-первых, в том, что они защищают бактерии от губительного действия солнечных лучей, поэтому в воздухе так много пигментных бактерий; а во-вторых, пигменты участвуют в обмене веществ этих бактерий.

Часть вторая

ГЕНЕТИКА БАКТЕРИЙ

Глава 9

Некоторые общие понятия о генетической системе

Существование генов как дискретных единиц наследственности было установлено в 1865 г. Г. Менделем, а в 1869 г. Ф. Мишер впервые выделил ДНК. Однако прошло около 80 лет, прежде чем было установлено, что носителем генов является не белок, а ДНК. Это было сделано в опытах с пневмококками. В 1928 г. Ф. Гриффитс впервые осуществил трансформацию (превращение) невирулентных пневмококков в вирулентные. Он заразил белых мышей смесью живых, но не образующих капсул невирулентных пневмококков с убитыми капсульными вирулентными пневмококками. В организме мышей бескапсульные пневмококки превратились в капсульные, вызвали их заболевание и смерть. Механизм такой трансформации оставался неясным в течение 16 лет. В 1944 г. О. Эйвери, К. Мак-Леод и М. Мак-Карти осуществили трансформацию бескапсульных пневмококков в капсульные in vitro. Они добавили к культуре бескапсульных пневмококков ДНК, выделенную из капсульных пневмококков, в результате чего бескапсульные превратились в капсульные и стали вирулентными для мышей. Так впервые убедительно было доказано, что носителем единиц наследственности (генов) является ДНК. Через 9 лет после этого, в 1953 г., Ф. Крик и Дж. Уотсон определили структуру гена, основанную на двойной спирали ДНК. Это открытие позволило понять, каким образом ген выполняет свои три фундаментальные функции: 1) непрерывность наследственности – благодаря полуконсервативному механизму репликации ДНК; 2) управление структурами и функциями организма – с помощью генетического кода, использующего запас всего из четырех букв (оснований): А (аденин), Т (тимин), Г (гуанин) и Ц (цитозин); 3) эволюцию организмов – благодаря мутациям и генетическим рекомбинациям. Работами Ф. Крика, M. Ниренберга, С. Очоа и Х. Кораны к 1966 г. генетический код был полностью расшифрован. Он характеризуется следующими основными свойствами:

1. Код триплетный. Это означает, что кодон (функциональная единица, кодирующая аминокислоту) состоит из трех букв (оснований).

2. Код неперекрывающийся, т. е. соседние кодоны представлены отдельными самостоятельными триплетами.

3. Код вырожденный, т. е. каждая аминокислота кодируется более чем одним кодоном.

4. Число триплетов, которые не кодируют ни одной аминокислоты, т. е. «бессмысленных», мало – всего три из 64.

5. Последовательность расположения кодонов в гене определяет последовательность расположения аминокислотных остатков в полипептидной цепи, кодируемой данным геном.

6. Код универсален, т. е. все живые существа используют один и тот же код для записи генетической информации. Это служит прямым доказательством единства происхождения живой материи. Полный словарь РНК-аминокислотного кода представлен на рис. 41.

Рис. 41. Генетический код

Одновременно с расшифровкой генетического кода происходило и изучение механизмов, с помощью которых осуществляется реализация генетической информации, заключенной в генах. Было обнаружено, что биосинтез белка осуществляется на особых структурах – рибосомах, а информация к ним от генов поступает через особых посредников – матричные РНК (мРНК), расположение кодонов в которых и несет программу сборки аминокислот в полипептидную цепь. Было установлено также, что хромосома состоит из особых функциональных единиц – оперонов, и в общих чертах были выяснены механизмы, с помощью которых регулируется их работа. В результате всех этих исследований стало очевидным, что генетическая система обладает уникальными свойствами, во многом обусловленными двунитевой структурой молекулы ДНК. Эти свойства заключаются в способности генетической системы к: 1) самоудвоению с помощью механизма саморепликации; 2) самовыражению (экспрессии) с помощью регулируемого синтеза мРНК; 3) самообновлению с помощью мутаций, рекомбинаций и транспонируемых элементов; 4) самозащите (самоисправлению) с помощью механизмов ревизии, репарации, супрессии и др.

Примечательно, что все эти функции контролируются специальными собственными генами соответствующей генетической системы. Исключительное значение, которое принадлежит генам в происхождении и эволюции жизни, диктует необходимость дать этому понятию определение.

В узком и специальном понимании ген представляет собой структурную единицу ДНК, расположение кодонов в которой детерминирует первичную структуру соответствующей полипептидной цепи. Но это определение не очень точно, так как существуют гены не только ДНКовые, но и РНКовые. Кроме того, некоторые гены вирусов и эукариот состоят из экзонов (кодирующих участков) и интронов (нетранслируемых участков). Например, сборка полных генов иммуноглобулинов и рецепторов Т-лимфоцитов происходит в результате сложной внутригенной рекомбинации в эмбриональном периоде. Кроме того, в одном и том же фрагменте ДНК может быть по крайней мере два гена с разными рамками считывания. Следовательно, структура гена сложнее, чем ранее предполагалось. Он не всегда является строго ограниченным и пространственно фиксированным участком хромосомы. Так называемые транспонируемые генетические элементы способны в интактной форме перемещаться из одного генома в другой. Наконец, для функционирования структурных генов требуется участие особых регуляторных генетических элементов – регуляторов, операторов, промоторов и т. п. Однако гены – это структуры, свойственные только живой материи. Поэтому в определении понятия гена следует исходить из той фундаментальной роли, которую он играет в живой материи.

Ген представляет собой универсальную организующую структурную единицу живой материи, которая, благодаря содержащейся в ней закодированной информации, обеспечивает единство и многообразие всех форм существования жизни, ее непрерывность и эволюцию. Ген является единственным носителем и хранителем жизни, а его продукт – белок – определяет способ и форму существования жизни (А. И. Коротяев). Любой объект природы, имеющий набор собственных генов, следует рассматривать как живой организм. В связи с этим главным критерием, отличающим живое от неживого, является наличие у живого собственной генетической системы. Именно она обусловливает ту целесообразность поведения живых существ, которая отличает их от неживых систем. С этих позиций жизнь можно определить как форму существования всех объектов природы, обладающих собственными геномами, которые и определяют многообразие организмов, их наследственность и эволюцию (А. И. Коротяев). В основе единства и многообразия форм жизни лежит единство генетического кода и многообразие геномов живых существ. Под генетической системой понимают совокупность всех генов данного живого существа, характеризующуюся определенным уровнем структурной организации и особенностями экспрессии, т. е. реализации заложенной в генах информации. В соответствии с этим можно выделить следующие основные этапы эволюции генетической системы: кодон → ген → оперон → геном вирусов и плазмид → хромосома прокариот (нуклеоид) → хромосомы эукариот (ядро).

Очень часто, говоря о генетической системе, употребляют термин «геном». Под геномом понимают всю совокупность нуклеотидов, содержащихся в хромосоме или в наборе хромосом данного индивидуума. Объем генома у представителей различных царств жизни очень сильно варьирует. Именно от объема генома, который определяет возможное количество генов, и зависит степень сложности структурной организации данного индивидуума и, соответственно, уровень и характер проявления им своей жизни.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.