Владимир Шилов - Гигиена. Конспект лекций Страница 4
- Категория: Научные и научно-популярные книги / Медицина
- Автор: Владимир Шилов
- Год выпуска: неизвестен
- ISBN: нет данных
- Издательство: неизвестно
- Страниц: 9
- Добавлено: 2019-02-04 10:43:26
Владимир Шилов - Гигиена. Конспект лекций краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Владимир Шилов - Гигиена. Конспект лекций» бесплатно полную версию:Гигиена как раздел медицины, изучающий связь и взаимодействие организма с окружающей средой, тесно соотносится со всеми дисциплинами, обеспечивающими формирование гигиенического мировоззрения врача: биологией, физиологией, микробиологией, клиническими дисциплинами. Это дает возможность широкого использования методов и данных этих наук в гигиенических исследованиях с целью изучения влияния факторов окружающей среды на организм человека и разработке комплекса профилактических мероприятий. Гигиеническая характеристика факторов среды и данные об их влиянии на здоровье в свою очередь способствуют более обоснованной диагностике заболеваний, патогенетическому лечению.
Владимир Шилов - Гигиена. Конспект лекций читать онлайн бесплатно
Более значительное и резкое падение атмосферного давления может вызвать явление декомпрессии – выделение газов, растворенных при нормальном барометрическом давлении, из крови и тканевых жидкостей. Это сопровождается болями в мышцах, суставах, костях. Осложнением является воздушная эмболия.
К мероприятиям по акклиматизации к кислородной недостаточности относятся тренировки в барокамерах, пребывание в условиях высокогорья, закаливание и другое, прием повышенных доз витаминов С, В1, В2, В6, РР, фолиевой кислоты, Р.
Действию повышенного барометрического давления подвергается определенная категория лиц: водолазы, рабочие подводных и подземных строительных работ. Работая в кессонах, различают три периода: компрессия, пребывание в условиях повышенного давления и декомпрессия. Первый период сопровождается незначительными функциональными изменениями: шум в ушах, заложенность, болевые ощущения вследствие механического давления на барабанную перепонку. Второй период сопровождается легкими функциональными нарушениями: урежением пульса и частоты дыхания, снижением максимального и повышением минимального артериального давления, понижением кожной чувствительности и слуха, усиливается перистальтика кишечника, повышается свертываемость крови, уменьшается содержание гемоглобина и эритроцитов. В эту фазу происходит насыщение крови и тканей растворенными газами (сатурация), происходит уравновешивание газов в организме и окружающей среде.
В период декомпрессии наблюдается обратный процесс – десатурация. При правильной декомпрессии растворенный газ выделяется через легкие из расчета – за 1 мин – 150 мл азота. При быстрой декомпрессии не успевает выделяться и поступает с кровью к тканям, вызывая газовую эмболию (кессонную болезнь).
Лекция 7. Электрическое состояние атмосферного воздуха
1. Ионизация воздуха
К электрическому состоянию атмосферного воздуха относят ионизацию, электрическое и магнитное поле земной атмосферы. Ионизация – образование электрозаряженных частиц, происходит под влиянием излучений радиоактивных веществ, Уф-радиации, рентгеновских и космических лучей, процессах нагревания, распыления, дробления и т. д. В результате ионизации от нейтрального атома отделяется электрон, который присоединяется к другому нейтральному атому, образуя отрицательный ион. Оставшаяся часть атома образует положительно заряженный ион. Ионизационное состояние воздуха характеризуется концентрацией ионов каждого вида в 1 мл воздуха.
Ионы, существующие самостоятельно или присоединившиеся к нейтральным молекулам кислорода, озона, азота и его окислов, принято называть легкими. Легкие ионы, скорость передвижения которых в воздухе составляет 1–2 см/с, существуют 1–2 мин, быстро рекомбинируются. Легкие ионы могут присоединять к себе взвешенные пылевые частицы, микробные тела, превращаясь в средние, тяжелые и сверхтяжелые ионы. Тяжелые ионы менее подвижны (0,0005 см/с), они прочно удерживают заряд.
Ионизационный режим воздушной среды определяется отношением тяжелых ионов к числу легких (N/n) и отношением количества положительных ионов к числу отрицательных (n+/n-) – коэффициентом униполярности. Чем более загрязнен воздух, тем выше этот коэффициент.
В воздухе курортных местностей содержание легких ионов составляет 2 тыс. – 3 тыс. в см3, в воздухе промышленных городов – 200–300 и менее. Количество легких ионов уменьшается с ухудшением микроклиматических условий в помещениях и с повышением содержания диоксида углерода.
Физиологический механизм действия ионизированного воздуха объясняется электрообменом в легочной ткани и нейрорефлекторными реакциями, возникающими в ответ на раздражение аэроионами рецепторов кожи и слизистых оболочек дыхательных путей. Под действием высоких концентраций отрицательных легких ионов (до 1 млн в 1 см3) у людей наблюдаются благоприятные изменения в газовом и минеральных обменах, стимулируются обменные процессы, ускоряются процессы заживления ран. Положительные ионы, напротив, оказывают угнетающее действие на человека, вызывая сонливость, депрессию, снижая работоспособность.
Положительное влияние ионизированного воздуха используют в лечебной практике, в производственных и жилых помещениях, на транспорте и т. д. Вместе с тем следует отметить, что биологическое действие ионов изучено еще недостаточно.
2. Электрическое поле земной атмосферы
Установлено, что между воздухом и земной поверхностью существует электрическое поле, характеризующееся напряженностью, измеряемой величиной потенциала (вольт) на единицу длины (метр). Эта величина называется градиентом электрического потенциала. Среднее его значение у поверхности Земли составляет 120 В/м; с высотой величина градиента уменьшается.
Человек в электрическом поле Земли подвергается воздействию разности потенциалов между уровнем головы и подошвами примерно в 200–250 В. Биологическое действие электрического поля атмосферы исследовано еще недостаточно.
3. Радиоактивность
При оценке физических свойств воздушной среды существенное значение имеет радиоактивность.
Естественная радиоактивность воздуха определяется прежде всего содержанием в нем таких газов, как радон, актион и торон – продуктов распада радия, актиния и тория, находящихся в земных породах. Кроме того, в воздухе содержатся углерод-14, аргон-41, фтор-18 и ряд других изотопов, образующихся в результате бомбардировки атомов кислорода, водорода и азота космическими лучами.
Наряду с радиоактивными аэрозолями в атмосферу могут попадать незначительные количества естественных радиоактивных веществ (Ra, K40, U и т. д.), что отмечается при разрушении земных пород, разложении органических веществ.
Естественная радиоактивность воздушной среды колеблется в пределах 2 × 10–14–4,4 × 10–13 Ku/л. При этом человек подвергается как внутреннему облучению за счет вдыхания a-, b– и y-излучающих веществ, так и внешнему воздействию (почвы, космических лучей). Общая суммарная доза облучения человека может достигать 175 мбэр/год.
Однако радиоактивность окружающей среды определяется не только естественными радиоактивными элементами, но радиоактивными веществами искусственного происхождения, появившимися в результате загрязнения среды при взрывах ядерных устройств, в связи с использованием радиоактивных веществ в науке и промышленности. Наибольшую опасность представляют долгоживущие радиоизотопы – стронций-90 и цезий-137, период полураспада которых составляет соответственно 29 и 33 года. По своим физико-химическим свойствам стронций-90 подобен кальцию, а цезий-137 – калию. Это означает, что стронций-90, попадая в организм, депонируется в костях, а цезий-137 распределяется по органам, обуславливая внутреннее облучение в течение длительного времени.
При гигиенической оценке радиоактивного загрязнения окружающей среды имеют значение ряд факторов:
• высота и мощность выбросов продуктов ядерного деления;
• направление и скорость ветра;
• дисперсный состав радиоактивной пыли;
• погодные условия (туман, осадки) и др.
Радиоактивные вещества через почву, грунтовые воды, воды открытых водоемов накапливаются в растениях, кормах для животных, организме рыб и других обитателей водоемов. Биологические объекты обладают способностью аккумулировать в себе радиоактивные вещества. Через пищевые биологические цепи радиоактивные вещества поступают в организм человека.
Лекция 8. Химический состав воздуха
1. Воздушная среда как смесь газов. Кислород
Воздушная среда, составляющая земную атмосферу, представляет собой смесь газов. Сухой атмосферный воздух содержит: кислорода 20,95 %, азота 78,09 %, диоксида углерода 0,03 %. Кроме того, в атмосферном воздухе содержатся аргон, гелий, неон, криптон, водород, ксенон и другие газы. В небольшом количестве в атмосферном воздухе присутствуют озон, оксид азота, йод, метан, водяные пары.
Кислород по биологической роли – самая важная составная часть воздуха. В природе постоянно происходит потребление кислорода при дыхании человека и животных. Расходуется кислород на процессы окисления и горения. Несмотря на значительный расход кислорода, его содержание в воздухе практически не изменяется, так как в растительном мире идет постоянно процесс ассимиляции углекислого газа и выделение кислорода. В результате процессов фотосинтеза в атмосферу поступает около 5 × 1014 тонн кислорода в год, что примерно соответствует его потреблению. Под действием солнечных лучей молекулы воды распадаются также с образованием кислорода.
Организм очень чувствителен к недостатку кислорода. Снижение его содержания в воздухе до 17 % приводит к учащению пульса, дыхания. Содержание в воздухе 7–8 % кислорода несовместимо с жизнью. Увеличение содержания кислорода до 100 % при нормальном давлении человеком переносится легко. С повышением давления до 405,3 кПа (4 атм) происходят местные поражения тканей легких и функциональные нарушения центральной нервной системы. Вместе с тем при содержании кислорода до 40–60 % и давлении до 303,94 кПа (3 атм) в барокамере наблюдается улучшение усвоения кислорода тканями, отмечается нормализация нарушенных функций.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.